PC/CP 320
Project Overview

Terry Sturtevant

Wilfrid Laurier University

October 23, 2019
There are 3 projects this term. Integration project brings together several things you've done in lab. Exploration project allows you to investigate something that has been mentioned, but you haven't used in the lab. Enclosure project allows you to design and create a casing for a device with the Raspberry Pi. You'll do the integration project and one other.
Outline

There are 3 projects this term.
Outline

There are 3 projects this term.

- Integration project
Outline

There are 3 projects this term.

- Integration project

 Brings together several things you’ve done in lab
Outline

There are 3 projects this term.

- *Integration* project

 Brings together several things you’ve done in lab

- *Exploration* project
Outline

There are 3 projects this term.

- *Integration* project
 Brings together several things you’ve done in lab

- *Exploration* project
 Allows you to investigate something that has been mentioned, but you haven’t used in the lab
Outline

There are 3 projects this term.

- *Integration* project

 Brings together several things you’ve done in lab

- *Exploration* project

 Allows you to investigate something that has been mentioned, but you haven’t used in the lab

- *Enclosure* project
Outline

There are 3 projects this term.

- **Integration** project
 Brings together several things you’ve done in lab

- **Exploration** project
 Allows you to investigate something that has been mentioned, but you haven’t used in the lab

- **Enclosure** project
 Allows you to design and create a casing for a device with the Raspberry Pi
Outline

There are 3 projects this term.

- *Integration* project
 Brings together several things you’ve done in lab

- *Exploration* project
 Allows you to investigate something that has been mentioned, but you haven’t used in the lab

- *Enclosure* project
 Allows you to design and create a casing for a device with the Raspberry Pi

You’ll do the integration project and one other.
Outline

Why two projects?
The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
The exploration project introduces something you've never used. The challenge is learning how to use it.
The enclosure project introduces you to prototyping in the Maker Lab. The challenge is learning how to design and create.

Trying to combine them would make it too easy to get overwhelmed.
Outline

Why two projects?

The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.

The exploration project introduces something you've never used. The challenge is learning how to use it.

The enclosure project introduces you to prototyping in the Maker Lab. The challenge is learning how to design and create.

Trying to combine them would make it too easy to get overwhelmed.
Outline

Why two projects?

- The integration project only involves previously-seen material.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is *adapting the code to incorporate all of them.*
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is *adapting the code to incorporate all of them*.
- The exploration project introduces something you’ve never used.

Terry Sturtevant
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is *adapting the code to incorporate all of them*.
- The exploration project introduces something you’ve never used. The challenge is *learning how to use it*.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is *adapting the code to incorporate all of them*.
- The exploration project introduces something you’ve never used. The challenge is *learning how to use it*.
- The enclosure project introduces you to prototyping in the Maker Lab.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is *adapting the code to incorporate all of them.*
- The exploration project introduces something you’ve never used. The challenge is *learning how to use it.*
- The enclosure project introduces you to prototyping in the Maker Lab. The challenge is *learning how to design and create.*
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
- The exploration project introduces something you’ve never used. The challenge is learning how to use it.
- The enclosure project introduces you to prototyping in the Maker Lab. The challenge is learning how to design and create.

Trying to combine them would make it too easy to get overwhelmed.
Integration project
Integration project

- Distance sensor (IR or ultrasonic)
- Operator interface
- Motor (DC, servo, or stepper)
- Raspberry Pi
- Multivalued Input
- User output (complex)
Integration project

Note that the “?” may include more than just signals, such as a D/A or A/D converter.
Exploration project
Exploration project

The code is to demonstrate "proof-of-concept".
Exploration project

The code is to demonstrate “proof-of-concept”.

Diagram:

- Operator interface
- Raspberry Pi
- Unfamiliar device
Enclosure Project
Enclosure Project

- Incorporate one device with Raspberry Pi.
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
- Make it easy to assemble and disassemble.
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
- Make it easy to assemble and disassemble.
 Any individual component should be easy to replace
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
- Make it easy to assemble and disassemble.
 Any individual component should be easy to replace
 Avoid glue, solder, etc.
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
- Make it easy to assemble and disassemble.
 Any individual component should be easy to replace
 Avoid glue, solder, etc.
- Design it so that it’s easy to adapt.
Enclosure Project

- Incorporate one device with Raspberry Pi.
 Leave access for power, interface, etc. connections.
- Make it easy to assemble and disassemble.
 Any individual component should be easy to replace
 Avoid glue, solder, etc.
- Design it so that it’s easy to adapt.
 e.g. Future users may want to add other components.
Schedule

There are 4 weeks, (8 lab periods), exclusively for the projects. Two weeks are exclusively for the integration project. Two weeks are mostly for the exploration or enclosure project. If you're doing the enclosure project you'll have to start much earlier, or you may not finish.
Schedule

- There are 4 weeks, (8 lab periods), exclusively for the projects.
Schedule

- There are 4 weeks, (8 lab periods), exclusively for the projects. Two weeks are exclusively for the integration project.
Schedule

- There are 4 weeks, (8 lab periods), exclusively for the projects. Two weeks are exclusively for the integration project. Two weeks are mostly for the exploration or enclosure project.
Schedule

- There are 4 weeks, (8 lab periods), exclusively for the projects.
 - Two weeks are exclusively for the integration project.
 - Two weeks are mostly for the exploration or enclosure project.

If you’re doing the enclosure project you’ll have to start much earlier, or you may not finish.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.

Lab 1B; Demonstrate previous device and one other. Decide on 3rd device to be used.

Lab 2A; Demonstrate previous devices and one other. Decide on 4th device to be used.

Lab 2B; Demonstrate all devices together. They may not yet interact; they just need to all be connected and functional at the same time.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.

- Lab 1B; Demonstrate previous device and one other.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.
- Lab 1B; Demonstrate previous device and one other. Decide on 3rd device to be used.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.
- Lab 1B; Demonstrate previous device and one other. Decide on 3rd device to be used.
- Lab 2A; Demonstrate previous devices and one other.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.
- Lab 1B; Demonstrate previous device and one other. Decide on 3rd device to be used.
- Lab 2A; Demonstrate previous devices and one other. Decide on 4th device to be used.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working. A motor is easy since those are recent.
- Lab 1B; Demonstrate previous device and one other. Decide on 3rd device to be used.
- Lab 2A; Demonstrate previous devices and one other. Decide on 4th device to be used.
- Lab 2B; Demonstrate all devices together.
Schedule (continued)

Two weeks, (i.e. 4 lab periods), are exclusively for the integration project.

- Lab 1A; Demonstrate 1 input or output device working.
 A motor is easy since those are recent.
- Lab 1B; Demonstrate previous device and one other.
 Decide on 3rd device to be used.
- Lab 2A; Demonstrate previous devices and one other.
 Decide on 4th device to be used.
- Lab 2B; Demonstrate all devices together.
 They may not yet interact; they just need to all be connected and functional at the same time.
Schedule (exploration)

[2 weeks, i.e. 4 lab periods], mostly for the exploration project.

Lab 3A; Choose device to explore and learn about it.

There are lots of resources online.

Lab 3B; Demonstrate the completed integration project.

This includes operator interaction.

Lab 4A; Demonstrate basic functionality of the device.

Show it doing something.

Lab 4B; Demonstrate the completed exploration project.

Show it doing something that wasn't in any of the resources you found.

Be sure to highlight what you came up with on your own.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

Lab 3A; Choose device to explore and learn about it. There are lots of resources online.

Lab 3B; Demonstrate the completed integration project. This includes operator interaction.

Lab 4A; Demonstrate basic functionality of the device. Show it doing something.

Lab 4B; Demonstrate the completed exploration project. Show it doing something that wasn't in any of the resources you found. Be sure to highlight what you came up with on your own.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 3B; *Demonstrate the completed integration project.*
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 3B; Demonstrate the completed integration project.
 This includes operator interaction.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it. There are lots of resources online.
- Lab 3B; Demonstrate the completed integration project. This includes operator interaction.
- Lab 4A; Demonstrate basic functionality of the device.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it. There are lots of resources online.
- Lab 3B; *Demonstrate the completed integration project.* This includes operator interaction.
- Lab 4A; Demonstrate basic functionality of the device. Show it doing *something.*
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it. There are lots of resources online.
- Lab 3B; *Demonstrate the completed integration project.* This includes operator interaction.
- Lab 4A; Demonstrate basic functionality of the device. Show it doing *something*.
- Lab 4B; *Demonstrate the completed exploration project.*
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- **Lab 3A:** Choose device to explore and learn about it.
 - There are lots of resources online.
- **Lab 3B:** Demonstrate the completed integration project.
 - This includes operator interaction.
- **Lab 4A:** Demonstrate basic functionality of the device.
 - Show it doing something.
- **Lab 4B:** Demonstrate the completed exploration project.
 - Show it doing something that wasn’t in any of the resources you found.
Schedule (exploration)

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- **Lab 3A:** Choose device to explore and learn about it.
 There are lots of resources online.

- **Lab 3B:** *Demonstrate the completed integration project.*
 This includes operator interaction.

- **Lab 4A:** Demonstrate basic functionality of the device.
 Show it doing *something*.

- **Lab 4B:** *Demonstrate the completed exploration project.*
 Show it doing *something that wasn’t in any of the resources you found.*

Be sure to highlight what you came up with on your own.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.

Lab 3B; Demonstrate the completed integration project. This includes operator interaction. Include enclosure prototype. There may still be refinements needed.

Lab 4B; Demonstrate the completed enclosure project. Show how to assemble it and how it is in operation. Be sure to highlight your creative ideas.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*

- Lab 3B; *Demonstrate the completed integration project.*
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.

- Lab 3B; Demonstrate the completed integration project. This includes operator interaction.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*

- Lab 3B; *Demonstrate the completed integration project.*
 This includes operator interaction.

 Include enclosure prototype.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.

- Lab 3B; *Demonstrate the completed integration project.*
 This includes operator interaction.

Include enclosure prototype.

There may still be refinements needed.
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*

- Lab 3B; *Demonstrate the completed integration project.*
 This includes operator interaction.

 Include enclosure prototype.

 There may still be refinements needed.

- Lab 4B; *Demonstrate the completed enclosure project.*
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*

- **Lab 3B;** *Demonstrate the completed integration project.*

 This includes operator interaction.

 Include enclosure prototype.

 There may still be refinements needed.

- **Lab 4B;** *Demonstrate the completed enclosure project.*

 Show *how to assemble it and how it is in operation.*
Schedule (enclosure)

There are 2 weeks, (i.e. 4 lab periods), mostly for the enclosure project. *Because the Maker Lab is busy at the end of term, you will need to get most of this done ahead of time.*

- Lab 3B; *Demonstrate the completed integration project.*
 This includes operator interaction.

 Include enclosure prototype.

 There may still be refinements needed.

- Lab 4B; *Demonstrate the completed enclosure project.*
 Show *how to assemble it and how it is in operation.*

 Be sure to highlight your creative ideas.
Project Substitution Option

You have the option of combining the projects as follows:

An unfamiliar input device can replace one input device for the integration project.

An unfamiliar output device can replace one output device for the integration project.

If you make this your 4th device, you can determine feasibility during the first 3 lab periods. This means that you are basically doing the projects in parallel.

Terry Sturtevant
PC/CP 320 Project Overview
Project Substitution Option

- You have the option of *combining* the projects as follows:
Project Substitution Option

- You have the option of *combining* the projects as follows:
 An *unfamiliar* input device can replace one input device for
 the integration project.
Project Substitution Option

- You have the option of *combining* the projects as follows:
 - An *unfamiliar* input device can replace one input device for the integration project.
 - An *unfamiliar* output device can replace one output device for the integration project.
You have the option of *combining* the projects as follows:

An *unfamiliar* input device can replace one input device for the integration project.

An *unfamiliar* output device can replace one output device for the integration project.

If you make this your 4th device, you can determine feasibility during the first 3 lab periods.
Project Substitution Option

- You have the option of *combining* the projects as follows:
 - An *unfamiliar* input device can replace one input device for the integration project.
 - An *unfamiliar* output device can replace one output device for the integration project.

 If you make this your 4th device, you can determine feasibility during the first 3 lab periods.

 This means that you are basically doing the projects in parallel.
Ramifications

For the exploration project, you make a reduced test program for the unfamiliar device. (In fact, it may be similar to what you use for early testing of the device.) It may use functionality you created for the integration project. If you can show it working on time as the fourth device, the integration demonstration can be delayed.
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
 (In fact, it may be similar to what you use for early testing of the device.)
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device. (In fact, it may be similar to what you use for early testing of the device.)
- It may use functionality you created for the integration project.
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
 (In fact, it may be similar to what you use for early testing of the device.)
 It may use functionality you created for the integration project.

- *If you can show it working on time as the 4th device, the integration demonstration can be delayed.*
Component Options

Motor Options
- servo, stepper, or PMDC with shaft encoder

Distance Sensor Options
- ultrasonic or infrared

Multivalued Input Options
- more than just a switch; allows a range of values

User Output Options
- more complex than an ON/OFF LED; displays a range of values

Following are some examples of options for the various system components.

Terry Sturtevant
PC/CP 320 Project Overview
Component Options

- **motor** - servo, stepper, or PMDC with shaft encoder
Component Options

- **motor** - servo, stepper, or PMDC with shaft encoder
- **distance sensor** - ultrasonic or infrared
Component Options

- **motor** - servo, stepper, or PMDC with shaft encoder
- **distance sensor** - ultrasonic or infrared
- **multivalued input** - more than just a switch; allows a range of values
Component Options

- **motor** - servo, stepper, or PMDC with shaft encoder
- **distance sensor** - ultrasonic or infrared
- **multivalued input** - more than just a switch; allows a range of values
- **user output** - more complex just an ON/OFF LED; displays a range of values
Component Options

- **motor** - servo, stepper, or PMDC with shaft encoder
- **distance sensor** - ultrasonic or infrared
- **multivalued input** - more than just a switch; allows a range of values
- **user output** - more complex just an ON/OFF LED; displays a range of values

Following are some examples of options for the various system components.
Motor Options

Servo motor
- uses PWM output from the Pi

Stepper motor
- uses 4 digital outputs from the Pi

DC motor
- needs MOSFET for control
- Also needs shaft encoder inputs to monitor speed and position (combination project possibility)
Motor Options

- **Servo motor** - uses PWM output from the Pi
Motor Options

- **Servo motor** - uses PWM output from the Pi
- **Stepper motor** - uses 4 digital outputs from the Pi
Motor Options

- **Servo motor** - uses PWM output from the Pi
- **Stepper motor** - uses 4 digital outputs from the Pi
- **DC motor** - needs MOSFET for control
Motor Options

- **Servo motor** - uses PWM output from the Pi
- **Stepper motor** - uses 4 digital outputs from the Pi
- **DC motor** - needs MOSFET for control
 Also needs shaft encoder *inputs* to monitor speed and position
Motor Options

- **Servo motor** - uses PWM output from the Pi
- **Stepper motor** - uses 4 digital outputs from the Pi
- **DC motor** - needs MOSFET for control

 Also needs shaft encoder *inputs* to monitor speed and position

(combination project possibility)
Distance Sensor Options

- Ultrasonic sensor - digital TRIGGER (output) and ECHO (input) pulses with the Pi. It's a 5V device, so ECHO pulses must be adjusted for Pi.
- Infrared sensor - analog output must feed into ADC to interface with the Pi.
Distance Sensor Options

- **Ultrasonic** sensor - digital TRIGGER (output) and ECHO (input) pulses with the Pi
Distance Sensor Options

- **Ultrasonic** sensor - digital TRIGGER (output) and ECHO (input) pulses with the Pi

 It’s a 5V device, so ECHO pulses must be adjusted for Pi
Distance Sensor Options

- **Ultrasonic** sensor - digital TRIGGER (output) and ECHO (input) pulses with the Pi
 It’s a 5V device, so ECHO pulses must be adjusted for Pi
- **Infrared** sensor- analog output must feed into ADC to interface with the Pi
Multivalued Input Options

Analog sensor—such as photoresistor or photodiode, Hall sensor, resistive or capacitive soil moisture sensor, heart rate monitor (combination project possibilities)

Analog output must feed into ADC to interface with the Pi. Some will need voltage dividers or need analog voltage amplification or attenuation.

If you are using an analog sensor, it makes sense to use the ultrasonic distance sensor so your two input devices are more independent.
Multivalued Input Options

- **Analog sensor** - such as photoresistor or photodiode, Hall sensor,
Multivalued Input Options

- **Analog sensor** - such as photoresistor or photodiode, Hall sensor, resistive or capacitive soil moisture sensor, heart rate monitor *(combination project possibilities)*
Multivalued Input Options

- **Analog sensor** - such as photoresistor or photodiode, Hall sensor, resistive or capacitive soil moisture sensor, heart rate monitor (*combination project possibilities*).

 analog output must feed into ADC to interface with the Pi.
Multivalued Input Options

- **Analog sensor** - such as photoresistor or photodiode, Hall sensor, resistive or capacitive soil moisture sensor, heart rate monitor. *

(combination project possibilities) *

analog output must feed into ADC to interface with the Pi. Some will need voltage dividers or need analog voltage amplification or attenuation.
Multivalued Input Options

- **Analog sensor** - such as photoresistor or photodiode, Hall sensor, resistive or capacitive soil moisture sensor, heart rate monitor. (combination project possibilities)

analog output must feed into ADC to interface with the Pi. Some will need voltage dividers or need analog voltage amplification or attenuation.

If you are using an analog sensor, it makes sense to use the ultrasonic distance sensor so your two input devices are more independent.
Multivalued Input Options (continued)

- DS18B20 1-wire temperature sensor (combination project possibility)
- DHT11 temperature/humidity sensor (combination project possibility)
- Keypad (combination project possibility)
- Capacitive Hex Keypad (combination project possibility)
- RFID reader (combination project possibility)
- TM1638 Keypad/display (combination project possibility)
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
- **Keypad** *(combination project possibility)*
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** (*combination project possibility*)
- **DHT11 temperature/humidity sensor** (*combination project possibility*)
- **Keypad** - (*combination project possibility*)
- **Capacitive Hex Keypad** - (*combination project possibility*)
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
- **Keypad** - *(combination project possibility)*
- **Capacitive Hex Keypad** - *(combination project possibility)*
- **RFID reader** - *(combination project possibility)*
Multivalued Input Options (continued)

- DS18B20 1-wire temperature sensor \((combination\ project\ possibility) \)
- DHT11 temperature/humidity sensor \((combination\ project\ possibility) \)
- Keypad - \((combination\ project\ possibility) \)
- Capacitive Hex Keypad - \((combination\ project\ possibility) \)
- RFID reader - \((combination\ project\ possibility) \)
- TM1638 Keypad/display - \((combination\ project\ possibility) \)
User Output Options (complex)

- **PWM LED**
 - Varying brightness can convey information

- **Analog voltage**
 - Varying voltage can convey information

- **Analog output**
 - Requires DAC to interface with the Pi

- **MAX7219 displays**
 - Combination project possibility
 - Includes 8x8 dot matrix, 8 digit 7 segment display
 - 128x32 OLED display
 - Combination project possibility

- **I²C TM1637 display**
 - Combination project possibility

- **TM1638 Keypad/display**
 - Combination project possibility

- **LED string options**
 - Combination project possibility
User Output Options (complex)

- PWM LED - varying brightness can convey information
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information

 analog output requires DAC to interface with the Pi
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 - analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 - analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
 - including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 - uses I^2C
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
User Output Options (complex)

- **PWM LED** - varying brightness can convey information
- **Analog voltage** - varying voltage can convey information
 analog output requires DAC to interface with the Pi
- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
- **TM1638 Keypad/display** - *(combination project possibility)*
User Output Options (complex)

- **PWM LED** - varying brightness can convey information

- **Analog voltage** - varying voltage can convey information
 analog output requires DAC to interface with the Pi

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display

- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C

- **TM1637 display** - *(combination project possibility)*

- **TM1638 Keypad/display** - *(combination project possibility)*

- **LED string options** - *(combination project possibility)*
Operator Interface Options

Different modes - operation of system changes based on operator input
Change sensitivity - range of response controlled by operator
These are in addition to simply monitoring the status of the system.
Operator Interface Options

- **Different modes** - operation of system changes based on operator input
Operator Interface Options

- **Different modes** - operation of system changes based on operator input
- **Change sensitivity** - range of response controlled by operator
Operator Interface Options

- **Different modes** - operation of system changes based on operator input
- **Change sensitivity** - range of response controlled by operator

These are *in addition* to simply monitoring the status of the system.