PC/CP 320
Exploration Project

Terry Sturtevant

Wilfrid Laurier University

October 24, 2019
Outline

There are 2 projects this term. Integration project brings together several things you’ve done in lab. Exploration project allows you to investigate something that has been mentioned, but you haven’t used in the lab.
Outline

There are 2 projects this term.
Outline

There are 2 projects this term.

- *Integration* project
Outline

There are 2 projects this term.

- *Integration* project

 Brings together several things you’ve done in lab
There are 2 projects this term.

- *Integration* project

 Brings together several things you’ve done in lab

- *Exploration* project
Outline

There are 2 projects this term.

- **Integration** project
 Brings together several things you’ve done in lab

- **Exploration** project
 Allows you to investigate something that has been mentioned, but you haven’t used in the lab
Exploration Project Information

Exploration Goal Options

Outline

Schedule

Project Substitution Option

Outline

Why two projects?

The integration project only involves previously-seen material.
The challenge is adapting the code to incorporate all of them.
The exploration project introduces something you've never used.
The challenge is learning how to use it.

Trying to combine both would make it too easy to get overwhelmed.
Outline

Why two projects?
Outline

Why two projects?

- The integration project only involves previously-seen material.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
- The exploration project introduces something you’ve never used.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
- The exploration project introduces something you’ve never used. The challenge is learning how to use it.
Outline

Why two projects?

- The integration project only involves previously-seen material. The challenge is adapting the code to incorporate all of them.
- The exploration project introduces something you’ve never used. The challenge is learning how to use it.

Trying to combine both would make it too easy to get overwhelmed.
Exploration project
Exploration project

Diagram:

- Operator interface
- Raspberry Pi
- Unfamiliar device
There are 4 weeks, (8 lab periods), exclusively for the projects.
There are 4 weeks, (8 lab periods), exclusively for the projects. Two weeks are exclusively for the integration project.
There are 4 weeks, (8 lab periods), exclusively for the projects. Two weeks are exclusively for the integration project. Two weeks are mostly for the exploration project.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

Lab 3A; Choose device to explore and learn about it.

There are lots of resources online.

Lab 4A; Demonstrate basic functionality of the device.

Show it doing something.

Lab 4B; Demonstrate the completed exploration project.

Show it doing something that wasn't in any of the resources you found.

Be sure to highlight what you came up with on your own.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.

- Lab 4A; Demonstrate basic functionality of the device. Show it doing something.

- Lab 4B; Demonstrate the completed exploration project. Show it doing something that wasn’t in any of the resources you found. Be sure to highlight what you came up with on your own.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- **Lab 3A**: Choose device to explore and learn about it.
 There are lots of resources online.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 4A; Demonstrate basic functionality of the device.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 4A; Demonstrate basic functionality of the device.
 Show it doing *something*.
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- **Lab 3A;** Choose device to explore and learn about it. There are lots of resources online.
- **Lab 4A;** Demonstrate basic functionality of the device. Show it doing *something*.
- **Lab 4B;** *Demonstrate the completed exploration project.*
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 4A; Demonstrate basic functionality of the device.
 Show it doing something.
- Lab 4B; *Demonstrate the completed exploration project.*
 Show it doing *something that wasn’t in any of the resources you found.*
Schedule

There are 2 weeks, (i.e. 4 lab periods), mostly for the exploration project.

- Lab 3A; Choose device to explore and learn about it.
 There are lots of resources online.
- Lab 4A; Demonstrate basic functionality of the device.
 Show it doing something.
- Lab 4B; Demonstrate the completed exploration project.
 Show it doing something that wasn’t in any of the resources you found.

Be sure to highlight what you came up with on your own.
Project Substitution Option

You have the option of combining the projects as follows:

- An unfamiliar input device can replace one input device for the integration project.
- An unfamiliar output device can replace one output device for the integration project.

If you make this your 4th device, you can determine feasibility during the first 3 lab periods. This means that you are basically doing the projects in parallel.

Terry Sturtevant
Project Substitution Option

- You have the option of *combining* the projects as follows:
You have the option of *combining* the projects as follows:

An *unfamiliar* input device can replace one input device for the integration project.
You have the option of combining the projects as follows:

An *unfamiliar* input device can replace one input device for the integration project.

An *unfamiliar* output device can replace one output device for the integration project.
Project Substitution Option

- You have the option of *combining* the projects as follows:
 - An *unfamiliar* input device can replace one input device for the integration project.
 - An *unfamiliar* output device can replace one output device for the integration project.

If you make this your 4th device, you can determine feasibility during the first 3 lab periods.
Project Substitution Option

You have the option of combining the projects as follows:

An *unfamiliar* input device can replace one input device for the integration project.

An *unfamiliar* output device can replace one output device for the integration project.

If you make this your 4^{th} device, you can determine feasibility during the first 3 lab periods.

This means that you are basically doing the projects in parallel.
Ramifications
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
 (In fact, it may be similar to what you use for early testing of the device.)
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
 (In fact, it may be similar to what you use for early testing of the device.)
- It may use functionality you created for the integration project.
Ramifications

- For the exploration project, you make a reduced test program for the unfamiliar device.
 (In fact, it may be similar to what you use for early testing of the device.)
 It may use functionality you created for the integration project.
- *If you can show it working on time as the 4th device, the integration demonstration can be delayed.*
Exploration Goal Options

Preliminary
- for devices with few or no examples with Raspberry Pi
 Exhibit sample operation with Raspberry Pi

Previous Examples
- for devices with several examples with Raspberry Pi
 Exhibit different operation with Raspberry Pi than examples
 OR
 Change code format from examples
 e.g. create library if examples bit-bash
 e.g. add functionality absent from examples
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry pi
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi

 Exhibit sample operation with Raspberry Pi
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi
 - Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry Pi
 - Exhibit different operation with Raspberry Pi than examples
 - OR
 - Change code format from examples
 - e.g. create library if examples bit-bash
 - e.g. add functionality absent from examples
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi

 Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry Pi

 Exhibit *different* operation with Raspberry Pi than examples
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi
 Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry Pi
 Exhibit *different* operation with Raspberry Pi than examples

OR
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi
 Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry Pi
 Exhibit *different* operation with Raspberry Pi than examples
 OR
 Change code format from examples
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry Pi
 Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry Pi
 Exhibit *different* operation with Raspberry Pi than examples
 OR
 Change code format from examples
 e.g. create library if examples bit-bash
Exploration Goal Options

- **Preliminary** - for devices with *few or no* examples with Raspberry pi

 Exhibit sample operation with Raspberry Pi

- **Previous Examples** - for devices with *several* examples with Raspberry pi

 Exhibit *different* operation with Raspberry Pi than examples
 OR

 Change code format from examples

 e.g. create library if examples bit-bash

 e.g. add functionality absent from examples
Project Components

Software
- simple example for others to use

Documentation
- includes list of sources you used

You are part of an ongoing community of creators and developers. Your work will be part of what future members of the community use.

Video or screencast
- specifically exhibiting what you developed
Project Components

- **Software** - simple example for others to use
Project Components

- **Software** - simple example for others to use
- **Documentation** - includes list of sources you used
Project Components

- **Software** - simple example for others to use
- **Documentation** - includes list of sources you used

You are part of an ongoing community of creators and developers
Project Components

- **Software** - simple example for others to use
- **Documentation** - includes list of sources you used

You are part of an ongoing community of creators and developers

Your work will be part of what future members of the community use
Project Components

- **Software** - simple example for others to use
- **Documentation** - includes list of sources you used

You are part of an ongoing community of creators and developers

Your work will be part of what future members of the community use

- **Video or screencast** - specifically exhibiting what you developed
Multivalued Input Options

Analog sensor — such as resistive or capacitive soil moisture sensor, heart rate monitor (combination project possibilities). An analog output must feed into ADC to interface with the Pi. Some will need voltage dividers or need analog voltage amplification or attenuation. Devices like this require calibration to be useful to future users.
Multivalued Input Options

- **Analog sensor** - such as resistive or capacitive soil moisture sensor, heart rate monitor

 (combination project possibilities)
Multivalued Input Options

- **Analog sensor** - such as resistive or capacitive soil moisture sensor, heart rate monitor

 (combination project possibilities)

 analog output must feed into ADC to interface with the Pi
Multivalued Input Options

- **Analog sensor** - such as resistive or capacitive soil moisture sensor, heart rate monitor

 (combination project possibilities)

 Analog output must feed into ADC to interface with the Pi, some will need voltage dividers or need analog voltage amplification or attenuation.
Multivalued Input Options

- **Analog sensor** - such as resistive or capacitive soil moisture sensor, heart rate monitor

(combination project possibilities)

analog output must feed into ADC to interface with the Pi
some will need voltage dividers or need analog voltage amplification or attenuation

Devices like this require *calibration* to be useful to future users.
Multivalued Input Options (continued)

- DS18B20 1-wire temperature sensor (combination project possibility)
- DHT11 temperature/humidity sensor (combination project possibility)
- Keypad (combination project possibility)
- Capacitive Hex Keypad (combination project possibility)
- RFID reader (combination project possibility)
- TM1638 Keypad/display (combination project possibility)

Some of these have existing libraries; others may have simpler bit-bashing examples.
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
Exploration Project Information

Exploration Goal Options

Project Components

Multivalued Input Options

User Output Options

Operator Interface Options

Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
- **Keypad** *(combination project possibility)*

Some of these have existing libraries; others may have simpler bit-bashing examples.

Terry Sturtevant

PC/CP 320 Exploration Project
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
- **Keypad** - *(combination project possibility)*
- **Capacitive Hex Keypad** - *(combination project possibility)*
Multivalued Input Options (continued)

- DS18B20 1-wire temperature sensor \((combination\ project\ possibility)\)
- DHT11 temperature/humidity sensor \((combination\ project\ possibility)\)
- Keypad - \((combination\ project\ possibility)\)
- Capacitive Hex Keypad - \((combination\ project\ possibility)\)
- RFID reader - \((combination\ project\ possibility)\)
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** (*combination project possibility*)
- **DHT11 temperature/humidity sensor** (*combination project possibility*)
- **Keypad** - (*combination project possibility*)
- **Capacitive Hex Keypad** - (*combination project possibility*)
- **RFID reader** - (*combination project possibility*)
- **TM1638 Keypad/display** - (*combination project possibility*)
Multivalued Input Options (continued)

- **DS18B20 1-wire temperature sensor** *(combination project possibility)*
- **DHT11 temperature/humidity sensor** *(combination project possibility)*
- **Keypad** - *(combination project possibility)*
- **Capacitive Hex Keypad** - *(combination project possibility)*
- **RFID reader** - *(combination project possibility)*
- **TM1638 Keypad/display** - *(combination project possibility)*

Some of these have existing libraries; others may have simpler bit-bashing examples.
User Output Options (complex)

- MAX7219 displays including 8x8 dot matrix, 8 digit 7 segment display
- 128x32 OLED display
- TM1637 display
- TM1638 Keypad/display

Some of these have existing libraries; others may have simpler bit-bashing examples.
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display

- **128x32 OLED display** - *(combination project possibility)*
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display

- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
- **TM1638 Keypad/display** - *(combination project possibility)*
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
- **TM1638 Keypad/display** - *(combination project possibility)*
- **LED string options** - *(combination project possibility)*
User Output Options (complex)

- **MAX7219 displays** - *(combination project possibility)*
 including 8x8 dot matrix, 8 digit 7 segment display
- **128x32 OLED display** - *(combination project possibility)*
 uses I^2C
- **TM1637 display** - *(combination project possibility)*
- **TM1638 Keypad/display** - *(combination project possibility)*
- **LED string options** - *(combination project possibility)*

Some of these have existing libraries; others may have simpler bit-bashing examples.
Operator Interface Options

If the device is for input, then the operator interface should be to display the output.

If the device is for output, then the operator interface should be to control the input.

The simpler the interaction, the easier it is for others to understand and adapt.
Operator Interface Options

- If the device is for input, then the operator interface should be to display the output.
Operator Interface Options

- If the device is for input, then the operator interface should be to display the output.
- If the device is for output, then the operator interface should be to control the input.
Operator Interface Options

- If the device is for input, then the operator interface should be to display the output.
- If the device is for output, then the operator interface should be to control the input.

The simpler the interaction, the easier it is for others to understand and adapt.