Electronics Wheatstone Bridge Circuits

Terry Sturtevant

Wilfrid Laurier University

October 18, 2016

• A common type of circuit is a **Wheatstone bridge**.

- A common type of circuit is a **Wheatstone bridge**.
- It is really a pair of voltage dividers using a common voltage source.

- A common type of circuit is a Wheatstone bridge.
- It is really a pair of voltage dividers using a common voltage source.
- It's usually operated with the output voltage at or close to zero.

This is a Wheatstone bridge.

Here it's redrawn to show the two voltage dividers.

Here's one voltage divider.

Here's the other voltage divider.

• Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.

- Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.
- Knowing the other resistors allows the variable one to be easily determined.

- Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.
- Knowing the other resistors allows the variable one to be easily determined.
- The circuit is very sensitive to small changes in the variable resistor.

The variable resistor could be in any of the four positions; this is one example.

• When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.

- When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_V}{R_4}$.)

- When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \to R_2$ is the *reference* branch, and $R_v \to R_4$ is the *evaluation* branch.

- When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \to R_2$ is the *reference* branch, and $R_v \to R_4$ is the *evaluation* branch.
- If R_v increases, V_B will decrease, and vice versa.

- When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \to R_2$ is the *reference* branch, and $R_v \to R_4$ is the *evaluation* branch.
- If R_v increases, V_B will decrease, and vice versa.
- For optimum performance, all resistors should be of the same order of magnitude.

- When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \to R_2$ is the *reference* branch, and $R_v \to R_4$ is the *evaluation* branch.
- If R_v increases, V_B will decrease, and vice versa.
- For optimum performance, all resistors should be of the same order of magnitude.
- If using a resistive sensor, use a meter to measure resistance of sensor to get a correct order of magnitude.

If resistors are chosen to be equal, except for R_{ν} , then the output voltage will vary with changes in R_{ν} .

Balancing a Wheatstone Bridge Wheatstone bridge options Wheatstone bridge current limit

$$V_A = V \frac{R}{2R} = V/2$$

$$V_A = V \frac{R}{2R} = V/2$$

 $V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$

If no current flows between A and B then

$$V_A = V \frac{R}{2R} = V/2$$

$$V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$$

$$V_A = V \frac{R}{2R} = V/2$$

$$V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$$

If no current flows between A and B then

$$V_A - V_B \approx V \frac{\Delta R}{4R}$$

$$V_A = V \frac{R}{2R} = V/2$$

$$V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$$

If no current flows between A and B then

$$V_A - V_B \approx V \frac{\Delta R}{4R}$$

which can be rearranged to give

$$V_A = V \frac{R}{2R} = V/2$$

$$V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$$

If no current flows between A and B then

$$V_A - V_B \approx V \frac{\Delta R}{4R}$$

which can be rearranged to give

$$\Delta R pprox rac{(V_A - V_B)}{V} 4R$$

$$V_A = V \frac{R}{2R} = V/2$$

$$V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R}$$

If no current flows between A and B then

$$V_A - V_B \approx V \frac{\Delta R}{4R}$$

which can be rearranged to give

$$\Delta R \approx \frac{(V_A - V_B)}{V} 4R$$

So we can determine ΔR .

$$\begin{split} V_A &= V \frac{R}{2R} = V/2 \\ V_B &= V \frac{R}{2R + \Delta R} = V \frac{R + \Delta R/2 - \Delta R/2}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R} \end{split}$$

If no current flows between A and B then

$$V_A - V_B \approx V \frac{\Delta R}{4R}$$

which can be rearranged to give

$$\Delta R \approx \frac{(V_A - V_B)}{V} 4R$$

So we can determine ΔR .

(This approximation is true as long as $\Delta R << R$)

Wheatstone bridge options

Lead wire compensation

Wheatstone bridge options

- Lead wire compensation
- Temperature compensation

Wheatstone bridge options

- Lead wire compensation
- Temperature compensation
- Instrumentation amplifiers

Wheatstone bridge options

- Lead wire compensation
- Temperature compensation
- Instrumentation amplifiers
 differential op amp circuit with voltage followers on the inputs

Lead wire compensation

Uncompensated

Lead wire compensation

No current flows in measurement lead; similar resistance in both other leads

Temperature response of non-active sensor similar to active sensor

Doubling sensitivity

Doubling sensitivity

Doubling sensitivity

Sensors in diagonal positions produce opposite responses.

Wheatstone bridge current limit

Put resistor in series with bridge

Wheatstone bridge current limit

- Put resistor in series with bridge
- Choose $R_s \gg R_t$

Wheatstone bridge current limit

- Put resistor in series with bridge
- Choose $R_s \gg R_t$ thus current controlled by R_s (fixed) rather than R_t (variable).

Reducing current

Reducing current

Reducing current

This is useful if the voltage supply is fixed.

