Electronics
Wheatstone Bridge Circuits

Terry Sturtevant
Wilfrid Laurier University

October 18, 2016
Wheatstone bridges

A common type of circuit is a Wheatstone bridge. It is really a pair of voltage dividers using a common voltage source. It's usually operated with the output voltage at or close to zero.
A common type of circuit is a Wheatstone bridge.
Wheatstone bridges

- A common type of circuit is a **Wheatstone bridge**.
- It is really a pair of voltage dividers using a common voltage source.
Wheatstone bridges

- A common type of circuit is a **Wheatstone bridge**.
- It is really a pair of voltage dividers using a common voltage source.
- It’s usually operated with the output voltage at or close to zero.
Wheatstone bridges

Balancing a Wheatstone Bridge
Wheatstone bridge options
Wheatstone bridge current limit

\[R_1 \quad R_2 \quad R_3 \quad R_4 \]

Terry Sturtevant
Electronics Wheatstone Bridge Circuits
Wheatstone bridges

Balancing a Wheatstone Bridge
Wheatstone bridge options
Wheatstone bridge current limit

\[V_{in} \]

\[R_1 \]

\[R_2 \]

\[R_3 \]

\[R_4 \]
Wheatstone bridges

Balancing a Wheatstone Bridge
Wheatstone bridge options
Wheatstone bridge current limit

\[V_{in} \]

\[R_1 \quad R_2 \]

\[R_3 \quad R_4 \]

\[V_{out} \]
This is a Wheatstone bridge.
Here it’s redrawn to show the two voltage dividers.
Here’s one voltage divider.
Here’s the other voltage divider.
Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.
Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.

Knowing the other resistors allows the variable one to be easily determined.
Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.

Knowing the other resistors allows the variable one to be easily determined.

The circuit is very sensitive to small changes in the variable resistor.
The variable resistor could be in any of the four positions; this is one example.
Balancing a Wheatstone Bridge

When the bridge is "balanced", $V_o = 0$ or $V_A = V_B$. (This will happen when $R_1R_2 = R_vR_4$.)

For our diagram $R_1 \rightarrow R_2$ is the reference branch, and $R_v \rightarrow R_4$ is the evaluation branch.

If R_v increases, V_B will decrease, and vice versa.

For optimum performance, all resistors should be of the same order of magnitude.

If using a resistive sensor, use a meter to measure resistance of sensor to get a correct order of magnitude.
Balancing a Wheatstone Bridge

• When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.

Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \rightarrow R_2$ is the reference branch, and $R_v \rightarrow R_4$ is the evaluation branch.
Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \rightarrow R_2$ is the *reference* branch, and $R_v \rightarrow R_4$ is the *evaluation* branch.
- If R_v increases, V_B will decrease, and vice versa.
Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \rightarrow R_2$ is the reference branch, and $R_v \rightarrow R_4$ is the evaluation branch.
- If R_v increases, V_B will decrease, and vice versa.
- For optimum performance, all resistors should be of the same order of magnitude.
Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $R_1/R_2 = R_v/R_4$.)
- For our diagram $R_1 \rightarrow R_2$ is the reference branch, and $R_v \rightarrow R_4$ is the evaluation branch.
- If R_v increases, V_B will decrease, and vice versa.
- For optimum performance, all resistors should be of the same order of magnitude.
- If using a resistive sensor, use a meter to measure resistance of sensor to get a correct order of magnitude.
If resistors are chosen to be equal, except for R_v, then the output voltage will vary with changes in R_v.

$R_v = R + \Delta R$
Specifically,
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]
Specifically,

\[V_A = V \frac{R}{2R} = \frac{V}{2} \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = \frac{V}{2} - V \frac{\Delta R/2}{2R+\Delta R} \approx \]

If no current flows between \(A \) and \(B \) then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]

which can be rearranged to give

\[\Delta R \approx \left(V_A - V_B \right) \frac{V}{4R} \]

So we can determine \(\Delta R \).

(This approximation is true as long as \(\Delta R \ll R \).)
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]
\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = V/2 - V \frac{\Delta R/2}{2R+\Delta R} \approx \]
\[V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between \(A \) and \(B \) then
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = V/2 - V \frac{\Delta R/2}{2R+\Delta R} \approx V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between \(A \) and \(B \) then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]

\[V_B = V \frac{R}{2R + \Delta R} = V \frac{R + \frac{\Delta R}{2} - \frac{\Delta R}{2}}{2R + \Delta R} = V/2 - V \frac{\Delta R/2}{2R + \Delta R} \approx V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between \(A\) and \(B\) then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]

which can be rearranged to give
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = V/2 - V \frac{\Delta R/2}{2R+\Delta R} \approx \]

\[V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between A and B then

\[V_A - V_B \approx \frac{\Delta R}{4R} \]

which can be rearranged to give

\[\Delta R \approx \left(\frac{V_A-V_B}{V}\right)4R \]
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = V/2 - V \frac{\Delta R/2}{2R+\Delta R} \approx \]

\[V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between A and B then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]

which can be rearranged to give

\[\Delta R \approx \frac{(V_A-V_B)}{V} 4R \]

So we can determine \(\Delta R \).
Specifically,

\[V_A = V \frac{R}{2R} = V/2 \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = V/2 - V \frac{\Delta R/2}{2R+\Delta R} \approx V/2 - V \frac{\Delta R/2}{2R} \]

If no current flows between \(A \) and \(B \) then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]

which can be rearranged to give

\[\Delta R \approx \frac{(V_A-V_B)}{V} 4R \]

So we can determine \(\Delta R \).

(This approximation is true as long as \(\Delta R \ll R \))
Wheatstone bridge options

- Lead wire compensation
Wheatstone bridge options

- Lead wire compensation
- Temperature compensation

Instrumentation amplifiers
differential op amp circuit with voltage followers on the inputs
Wheatstone bridge options

- Lead wire compensation
- Temperature compensation
- Instrumentation amplifiers
Wheatstone bridge options

- Lead wire compensation
- Temperature compensation
- Instrumentation amplifiers

 differential op amp circuit with voltage followers on the inputs
Lead wire compensation

Uncompensated

long leads; unknown resistance
Lead wire compensation

No current flows in measurement lead; similar resistance in both other leads
Temperature compensation
Temperature compensation
Temperature compensation

![Wheatstone Bridge Circuit Diagram](attachment:Wheatstone_Bridge_Circuit.png)

- **Active**

Terry Sturtevant
Electronics Wheatstone Bridge Circuits
Temperature compensation

[Temperature compensation diagram]
Temperature compensation

Temperature response of non-active sensor similar to active sensor
Doubling sensitivity
Doubling sensitivity
Doubling sensitivity

Sensors in diagonal positions produce opposite responses.
Wheatstone bridge current limit

- Put resistor in series with bridge
Wheatstone bridge current limit

- Put resistor in series with bridge
- Choose $R_s \gg R_t$
Wheatstone bridge current limit

- Put resistor in series with bridge
- Choose $R_s \gg R_t$

thus current controlled by R_s (fixed) rather than R_t (variable).
Reducing current
Reducing current

\[R_s \]
Reducing current

This is useful if the voltage supply is fixed.