Electronics
Electrical Terminology

Terry Sturtevant

Wilfrid Laurier University

September 8, 2016
In this document, you’ll learn:
In this document, you’ll learn:

- what **voltage**, **current**, and **resistance** mean
In this document, you’ll learn:

- what *voltage, current, and resistance* mean
- how to measure them
In this document, you’ll learn:

- what voltage, current, and resistance mean
- how to measure them
Current

Current

The **Current** symbol is \(I \), a property of a point in a circuit; it indicates the rate of flow of electric charge past the point. A current of one ampere equals a flow of one coulomb of charge per second, measured in amperes or amps \([A]\) using an ammeter measured at a point. In a series circuit, the direction of current flow is opposite to the direction of electron flow (Blame Benjamin Franklin.)
Current

- symbol is I
Current

- symbol is \(I \)
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
Current

- symbol is \(I \)
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one ampererequals a flow of one coulomb of charge per second
Current

- symbol is \(I \)
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one \textbf{ampere} equals a flow of one \textbf{coulomb} of charge per second
- measured in \textit{amperes} or amps [A] using an \textit{ammeter}

Terry Sturtevant
Current

- symbol is I
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second
- measured in **amperes** or amps [A] using an **ammeter**
- measured at a point; in series
Current

- symbol is I
- property of a **point in a circuit**; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second
- measured in **amperes** or amps [A] using an **ammeter**
- measured **at a point**; in series

By convention, the direction of current flow in a circuit is opposite to the direction of electron flow (*Blame Benjamin Franklin.*)
Resistance
Resistance

- symbol is R.

Resistance is a property of a device that limits the flow of current.
Resistance

- symbol is \(R \).
- property of a **device** that limits the flow of current
Resistance

- symbol is R.
- property of a device that limits the flow of current
- A potential difference of one volt produces a current of one ampere for a device with one ohm resistance.
Resistance

- symbol is R.
- property of a device that limits the flow of current
- A potential difference of one volt produces a current of one ampere for a device with one ohm resistance.
- measured in Ohms (Ω) using an ohmmeter
Resistance

- symbol is R.
- property of a device that limits the flow of current
- A potential difference of one volt produces a current of one ampere for a device with one ohm resistance.
- measured in Ohms (Ω) using an ohmmeter

An ohm is “small”.
Resistance

- symbol is R.
- property of a device that limits the flow of current
- A potential difference of one volt produces a current of one ampere for a device with one ohm resistance.
- measured in Ohms (Ω) using an ohmmeter
 An ohm is “small”.
 kΩ (10³ ohms) or MΩ (10⁶ ohms) are common.
Voltage

An eV of work is needed to move an electron through a potential difference of one volt. A joule of work is needed to move a coulomb of charge through a potential difference of one volt. Potential difference is measured in volts using a voltmeter.
Voltage

symbol is V.
Voltage

- symbol is V.

(in physics the symbol E will sometimes be used instead)
Voltage

- symbol is V.

 (in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

Terry Sturtevant

Electronics Electrical Terminology
Voltage

- symbol is \(V \).
 (in physics the symbol \(E \) will sometimes be used instead because it is also called electromotive force)
- property of a circuit that produces the flow of current
Voltage

- symbol is V.
 (in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)
- property of a **circuit** that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.
Voltage

- symbol is V.
 (in physics the symbol E will sometimes be used instead because it is also called electromotive force)
- property of a circuit that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.
 A joule of work is needed to move a coulomb of charge through a potential difference of one volt.
Voltage

- symbol is V.
 - (in physics the symbol E will sometimes be used instead because it is also called *electromotive force*)
- property of a *circuit* that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.
 - A *joule* of work is needed to move a *coulomb of charge* through a potential difference of one volt.
- Potential *difference*
Voltage

- symbol is V.
 (in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)
- property of a **circuit** that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.
 A **joule** of work is needed to move a **coulomb of charge** through a potential difference of one volt.
- Potential **difference**
- Measured in volts using a voltmeter
Voltage (continued)
Voltage (continued)

- measured *across a device or between two points*;
Voltage (continued)

- measured *across a device* or *between two points*;
 (it is a “difference”)

Terry Sturtevant

Electronics Electrical Terminology
Voltage (continued)

- measured *across a device or between two points*;
 (it is a “difference”)
- if measured at a *point* in a circuit, that means it is measured between the point and *ground*
Water analogy
Water analogy

- Voltage → pressure
- Electric current → water current
- Wires → large smooth pipes carrying water current
- Resistors → narrow or obstructed pipes which limit current

3.3K 100k
Water analogy

- voltage → pressure
Water analogy

- voltage → pressure
- electric current → water current
Water analogy

- voltage → pressure
- electric current → water current
- wires → large smooth pipes carrying water current
Water analogy

- voltage → pressure
- electric current → water current
- wires → large smooth pipes carrying water current
- resistors → narrow or obstructed pipes which limit current
Current, Resistance, and Voltage

Water analogy

Ohm’s Law

Power

If we want to increase the water flow we can:

- increase the water pressure
- use less rocks or widen the pipe
If we want to increase the water flow we can:
If we want to increase the water flow we can:
- increase the water pressure
If we want to increase the water flow we can:

- increase the water pressure
- use less rocks or widen the pipe
If we want to increase the current in a circuit we can:
If we want to increase the current in a circuit we can:

- increase the voltage
If we want to increase the current in a circuit we can:
- increase the voltage
- lower the resistance
Ohm’s Law
Ohm’s Law

\[V = IR \]
Ohm’s Law

\[V = IR \]

Voltage (or potential) across a resistor is proportional to the current flow through the resistor.
Ohm’s Law

\[V = IR \]

- Voltage (or potential) across a resistor is proportional to the current flow through the resistor.
- An **ohmic device** is one for which the ratio between voltage and current is constant; i.e. it doesn’t depend on the voltage.
Ohm’s Law

\[V = IR \]

- Voltage (or potential) across a resistor is proportional to the current flow through the resistor.

- An **ohmic device** is one for which the ratio between voltage and current is constant; i.e. it doesn’t depend on the voltage.

- A **non-ohmic device** is one for which the ratio between voltage and current is *not* constant; i.e. it depends on the voltage.
The power used by any element in a circuit is given by
\[P = I \times V \]
For a resistor, Ohm's law states
\[V = I \times R \]
and so
\[P = I \times (IR) \]
or
\[P = I^2 R \]
Alternatively
\[P = V R \]
or
\[P = V^2 R \]
Power

The power used by any element in a circuit is given by...
The power used by any element in a circuit is given by

\[P = I \times V \]
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
 \[V = I \times R \]
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
 \[V = I \times R \]
 and so
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm's law states
 \[V = I \times R \]
 and so
 \[P = I \times (IR) \]
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
 \[V = I \times R \]
 and so
 \[P = I \times (IR) \]
 or \[P = I^2 R \]
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
 \[V = I \times R \]
 and so
 \[P = I \times (IR) \]
 or \[P = I^2 R \]
- Alternatively
 \[P = \frac{V}{R} \times V \]
Power

- The power used by any element in a circuit is given by
 \[P = I \times V \]
- For a resistor, Ohm’s law states
 \[V = I \times R \]
 and so
 \[P = I \times (IR) \]
 or \[P = I^2R \]
- Alternatively
 \[P = \frac{V}{R} \times V \]
 or \[P = \frac{V^2}{R} \]
Be familiar with all three forms of the power equation.
Be familiar with all three forms of the power equation.

- \(P = I \times V \)
Be familiar with all three forms of the power equation.

- \(P = I \times V \)
- \(P = I^2 R \)
Be familiar with all three forms of the power equation.

- \(P = I \times V \)
- \(P = I^2 R \)
- \(P = \frac{V^2}{R} \)
Be familiar with all three forms of the power equation.

- $P = I \times V$
- $P = I^2 R$
- $P = \frac{V^2}{R}$

Power is measured in Watts, (W), although sometimes you may see VA; why?
Recap:
Recap:

1. **Terminology:** resistance *of*, voltage *across* (or voltage *between*), current *through*
Recap:

1. Terminology: resistance of, voltage across (or voltage between), current through

2. Voltage is always measured by a meter in parallel with the device being measured.
Recap:

1. Terminology: resistance of, voltage across (or voltage between), current through

2. Voltage is always measured by a meter in parallel with the device being measured.

3. Current is always measured by a meter in series with the device being measured.
Recap:

1. Terminology: resistance of, voltage across (or voltage between), current through

2. Voltage is always measured by a meter in parallel with the device being measured.

3. Current is always measured by a meter in series with the device being measured.

4. Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.
Recap:

1. Terminology: resistance of, voltage across (or voltage between), current through

2. Voltage is always measured by a meter in parallel with the device being measured.

3. Current is always measured by a meter in series with the device being measured.

4. Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.

5. An ohmic device is one where the ratio of current to voltage is constant.
Recap:

1. Terminology: resistance of, voltage across (or voltage between), current through

2. Voltage is always measured by a meter in parallel with the device being measured.

3. Current is always measured by a meter in series with the device being measured.

4. Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.

5. An ohmic device is one where the ratio of current to voltage is constant.

6. \[P = I \times V = I^2R = \frac{V^2}{R} \]