What’s the point of PC/CP320?

Terry Sturtevant

Wilfrid Laurier University

September 5, 2018
Why are we here?

Modular design

CP104/164 taught the basics of Python programming.

PC/CP220 labs taught the basics of building and debugging digital circuits, including digital circuit simulation.

PC221 taught how to measure current, voltage and resistance in simple circuits, including AC circuits and analog circuit simulation.

PC/CP320 will teach how to design and build circuits that interact with the real world.

As embedded systems become more universal, circuits which involve logic and which interact with the real world are everywhere.

Terry Sturtevant

What's the point of PC/CP320?
Why are we here?

- CP104/164 taught the basics of *Python programming*.

Terry Sturtevant
Why are we here?

- CP104/164 taught the basics of *Python programming*.
- PC/CP220 labs taught the basics of *building and debugging* digital circuits, including *digital circuit simulation*.
Why are we here?

- CP104/164 taught the basics of *Python programming*.
- PC/CP220 labs taught the basics of *building and debugging* digital circuits, including *digital circuit simulation*.
- PC221 taught how to *measure current, voltage and resistance* in simple circuits, including AC circuits and *analog circuit simulation*.

Why are we here?

- Modular design

What's the point of PC/CP320?

Terry Sturtevant
Why are we here?

- CP104/164 taught the basics of *Python programming*.
- PC/CP220 labs taught the basics of *building and debugging digital circuits*, including *digital circuit simulation*.
- PC221 taught how to *measure current, voltage and resistance* in simple circuits, including AC circuits and *analog circuit simulation*.
- PC/CP320 will teach how to *design and build circuits* that interact with the real world.
Why are we here?

- CP104/164 taught the basics of *Python programming*.
- PC/CP220 labs taught the basics of *building and debugging* digital circuits, including *digital circuit simulation*.
- PC221 taught how to *measure current, voltage and resistance* in simple circuits, including AC circuits and *analog circuit simulation*.
- PC/CP320 will teach how to *design and build circuits* that interact with the real world.

As embedded systems become more universal, circuits which involve logic and which interact with the real world are everywhere.
What’s special about circuits that interact with the real world?
What’s special about circuits that interact with the real world?

- How do you get *input* from the real world?
What’s special about circuits that interact with the real world?

- How do you get *input* from the real world?
- How do you provide *output* to the real world?
What’s special about circuits that interact with the real world?

- How do you get *input* from the real world?
- How do you provide *output* to the real world?
- How do *adjust* voltages, etc. to match the real world?
What’s special about circuits that interact with the real world?

- How do you get *input* from the real world?
- How do you provide *output* to the real world?
- How do *adjust* voltages, etc. to match the real world?

These issues apply whether you’re in the digital world, the analog world, or some combination of both.
Modular design

Designing complex circuits is difficult. Building them up from smaller modules is essential. Several different approaches will be used to develop your abilities to think and work in modular terms.
Modular design

- Designing complex circuits is difficult.
Modular design

- Designing complex circuits is difficult. Building them up from smaller modules is essential.
Modular design

- Designing complex circuits is difficult.
 Building them up from smaller **modules** is essential.

Several different approaches will be used to develop your abilities to think and work in modular terms.
Learning Objectives

There are 3 types of learning objectives:

1. **Conceptual understanding**
 - Certain ideas
2. **Practical applying**
 - Knowledge to specific “real-world” tasks
3. **Communication presenting**
 - Information and results in formats typical in professional settings

Different types of learning objectives lead to different types of assessments.

Terry Sturtevant

What’s the point of PC/CP320?
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual understanding: certain ideas
2. Practical: applying knowledge to specific “real-world” tasks
3. Communication: presenting information and results in formats which are typical in professional settings

Different types of learning objectives lead to different types of assessments.
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual

 understanding certain ideas
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual

 understanding certain ideas

2. Practical
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual
 understanding certain ideas

2. Practical
 applying knowledge to specific “real-world” tasks
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual
 understanding certain ideas

2. Practical
 applying knowledge to specific “real-world” tasks

3. Communication
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual
 - *understanding* certain ideas

2. Practical
 - *applying* knowledge to specific “real-world” tasks

3. Communication
 - *presenting* information and results in formats which are typical in professional settings
Learning Objectives

There are 3 types of learning objectives:

1. Conceptual
 - understanding certain ideas

2. Practical
 - applying knowledge to specific “real-world” tasks

3. Communication
 - presenting information and results in formats which are typical in professional settings

Different types of learning objectives lead to different types of assessments.
Conceptual Learning Objectives

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
5. Identifying common operational amplifier circuits and explaining their operation
6. Suggesting alternative ways to solve data acquisition and control problems

These will partly be assessed using quizzes.
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
5. Identifying common operational amplifier circuits and explaining their operation
6. Suggesting alternative ways to solve data acquisition and control problems

These will partly be assessed using quizzes.
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
5. Identifying common operational amplifier circuits and explaining their operation
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
5. Identifying common operational amplifier circuits and explaining their operation
6. Suggesting alternative ways to solve data acquisition and control problems
Conceptual Learning Objectives

Important ideas to grasp include:

1. Using correct terminology
2. Knowing characteristics of series and parallel circuits
3. Understanding use and properties of circuit configurations such as voltage dividers and Wheatstone bridges
4. Being familiar with analog characteristics of digital logic gates
5. Identifying common operational amplifier circuits and explaining their operation
6. Suggesting alternative ways to solve data acquisition and control problems

These will partly be assessed using quizzes.
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
2. Measuring DC and AC voltages and time intervals using oscilloscopes
3. Setting up DC supplies and function generators to produce voltages and signals as needed
4. Reading data sheets for electronic components to determine how to use them
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
2. Measuring DC and AC voltages and time intervals using oscilloscopes
3. Setting up DC supplies and function generators to produce voltages and signals as needed
4. Reading data sheets for electronic components to determine how to use them
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
2. Measuring DC and AC voltages and time intervals using oscilloscopes
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
2. Measuring DC and AC voltages and time intervals using oscilloscopes
3. Setting up DC supplies and function generators to produce voltages and signals as needed
Practical Learning Objectives

Tasks to become familiar with include:

1. Measuring DC voltages, currents, etc. using digital meters
2. Measuring DC and AC voltages and time intervals using oscilloscopes
3. Setting up DC supplies and function generators to produce voltages and signals as needed
4. Reading data sheets for electronic components to determine how to use them
Practical Learning Objectives (continued)

5. Designing circuitry to convert output from a sensor to a voltage which falls within a specified range

6. Designing circuitry to control an actuator from an input signal which falls within a specified range

7. Writing code to read sensors and control actuators in order to perform a real-world task

These will partly be assessed using lab demonstrations and the lab projects.
Practical Learning Objectives (continued)

5 Designing circuitry to convert output from a sensor to a voltage which falls within a specified range
Practical Learning Objectives (continued)

5. Designing circuitry to convert output from a sensor to a voltage which falls within a specified range

6. Designing circuitry to control an actuator from an input signal which falls within a specified range
Practical Learning Objectives (continued)

5. Designing circuitry to convert output from a sensor to a voltage which falls within a specified range

6. Designing circuitry to control an actuator from an input signal which falls within a specified range

7. Writing code to read sensors and control actuators in order to perform a real-world task
Practical Learning Objectives (continued)

5. Designing circuitry to convert output from a sensor to a voltage which falls within a specified range

6. Designing circuitry to control an actuator from an input signal which falls within a specified range

7. Writing code to read sensors and control actuators in order to perform a real-world task

These will partly be assessed using lab demonstrations and the lab projects.
Communication Learning Objectives

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
6. Creating block diagrams for circuits and sub-circuits to explain complex circuit designs
7. Producing online documents and/or videos to help other people use the same devices and perform similar tasks

These will be assessed directly using lab summaries and the lab projects.
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
6. Creating block diagrams for circuits and sub-circuits to explain complex circuit designs
7. Producing online documents and/or videos to help other people use the same devices and perform similar tasks

These will be assessed directly using lab summaries and the lab projects.
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms

These will be assessed directly using lab summaries and the lab projects.
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
6. Creating block diagrams for circuits and sub-circuits to explain complex circuit designs
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
6. Creating block diagrams for circuits and sub-circuits to explain complex circuit designs
7. Producing online documents and/or videos to help other people use the same devices and perform similar tasks
Communication Learning Objectives

Professional forms of communication include:

1. Maintaining a lab notebook detailing all lab investigation
2. Drawing schematic diagrams
3. Sketching waveforms
4. Summarizing key points related to each lab exercise
5. Answering specific questions arising from lab exercises
6. Creating block diagrams for circuits and sub-circuits to explain complex circuit designs
7. Producing online documents and/or videos to help other people use the same devices and perform similar tasks

These will be assessed directly using lab summaries and the lab projects.
How will I learn this process?
How will I learn this process?

- **Lab Demonstrations** -

Lab Postlab Requirements - show that you've identified important ideas from each lab

Lab Quizzes - show that you have internalized the important concepts

Lab Projects - show you can apply what you've learned to a real situation

The lectures will prepare you for the labs.
How will I learn this process?

- **Lab Demonstrations** -
 show that you’ve *completed and understood* specific tasks
How will I learn this process?

- **Lab Demonstrations** - show that you've *completed and understood* specific tasks
- **Lab Postlab Requirements** -
How will I learn this process?

- **Lab Demonstrations** -
 show that you've *completed and understood* specific tasks

- **Lab Postlab Requirements** -
 show that you’ve *identified important ideas* from each lab
How will I learn this process?

- **Lab Demonstrations** - show that you've *completed and understood* specific tasks
- **Lab Postlab Requirements** - show that you’ve *identified important ideas* from each lab
- **Lab Quizzes** -
How will I learn this process?

- **Lab Demonstrations** -
 show that you've *completed and understood* specific tasks

- **Lab Postlab Requirements** -
 show that you've *identified important ideas* from each lab

- **Lab Quizzes** -
 show that you have *internalized the important concepts*
How will I learn this process?

- **Lab Demonstrations** -
 show that you’ve *completed and understood* specific tasks

- **Lab Postlab Requirements** -
 show that you’ve *identified important ideas* from each lab

- **Lab Quizzes** -
 show that you have *internalized the important concepts*

- **Lab Projects** -
How will I learn this process?

- **Lab Demonstrations** - show that you’ve *completed and understood* specific tasks
- **Lab Postlab Requirements** - show that you’ve *identified important ideas* from each lab
- **Lab Quizzes** - show that you have *internalized the important concepts*
- **Lab Projects** - show you can *apply what you’ve learned to a real situation*
How will I learn this process?

- **Lab Demonstrations** - show that you’ve completed and understood specific tasks
- **Lab Postlab Requirements** - show that you’ve identified important ideas from each lab
- **Lab Quizzes** - show that you have internalized the important concepts
- **Lab Projects** - show you can apply what you’ve learned to a real situation

The lectures will prepare you for the labs.
What is a lab notebook?

A lab notebook is a book- or coil-bound notebook that is brought to every lab and lecture. It is used to record all data and observations in the lab and create a summary in the notebook after the lab. Photocopies of the summary are sometimes required. The lab notebook can be used for quizzes and lab tests, so it's to your benefit to keep the notebook organized and use it well.

Terry Sturtevant
What is a lab notebook?

- Book- or coil-bound notebook
What is a lab notebook?

- Book- or coil-bound notebook
 Bring it to every lab and lecture
What is a lab notebook?

- Book- or coil-bound notebook
- Bring it to every lab and lecture
- Record all data and observations in the lab
What is a lab notebook?

- Book- or coil-bound notebook
 - Bring it to *every* lab and lecture
 - Record all data and observations in the lab
 - Create a summary in the notebook *after* the lab

Terry Sturtevant

What’s the point of PC/CP320?
What is a lab notebook?

- Book- or coil-bound notebook
 Bring it to **every** lab and lecture
 Record all data and observations in the lab
 Create a summary in the notebook *after* the lab
 Photocopy and hand in the summary as required.
What is a lab notebook?

- Book- or coil-bound notebook
 Bring it to every lab and lecture
 Record all data and observations in the lab
 Create a summary in the notebook after the lab
 Photocopy and hand in the summary as required.

The lab notebook can be used for quizzes and lab tests, so it’s to your benefit to keep the notebook organized and use it well.
What are Pre-lab requirements?

Usually they involve looking up information that will be used in the lab. The background information will prepare you to get through the lab as efficiently as possible.
What are Pre-lab requirements?

- Usually they involve looking up information that will be used in the lab.
What are Pre-lab requirements?

- Usually they involve looking up information that will be used in the lab.

The background information will prepare you to get through the lab as efficiently as possible.
What are *Post-lab requirements*?
What are *Post-lab requirements*?

- **Summary** (usually handed in)
What are **Post-lab requirements?**

- Summary (usually handed in)
- One or two other questions (sometimes)
What are Post-lab requirements?

- Summary (usually handed in)
- One or two other questions (sometimes) questions which you should be able to answer if you understood what was important in the lab
What are Post-lab requirements?

- Summary (usually handed in)
- One or two other questions (sometimes)
 - questions which you should be able to answer if you understood what was important in the lab
- Rewritten sample code incorporating changes and good coding style
What are Post-lab requirements?

- Summary (usually handed in)
- One or two other questions (sometimes)
 questions which you should be able to answer if you understood what was important in the lab
- Rewritten sample code incorporating changes and good coding style
Where do I get the course information?
Where do I get the course information?

- The website -

The website -

denethor.wlu.ca/pc320

Everything for the course is there.

There is a lot of stuff on the webpage, so spend some time to become familiar with how it is laid out.
Where do I get the course information?

The website -

denethor.wlu.ca/pc320
Where do I get the course information?

The website -

denethor.wlu.ca/pc320

Everything for the course is there.
Where do I get the course information?

- The website -

 denethor.wlu.ca/pc320

 Everything for the course is there.

 There is a lot of stuff on the webpage, so spend some time to become familiar with how it is laid out.