Electronics
Single wire communication

Terry Sturtevant

Wilfrid Laurier University

October 23, 2017
Single wire communication

Parallel communication uses 4 or 8 bits plus control signals. SPI communication uses 3 bits plus chip select signals for each device. RS-232 (UART) communication requires 2 signals, and is normally only between two devices. I2C communication requires two signals and can involve several devices.

Why does the number of signals matter?

Terry Sturtevant
Electronics Single wire communication
Single wire communication

- **Parallel** communication uses 4 or 8 bits plus control signals
Single wire communication

- *Parallel* communication uses 4 or 8 bits plus control signals
- *SPI* communication uses 3 bits plus chip select signals for each device
Single wire communication

- *Parallel* communication uses 4 or 8 bits plus control signals
- *SPI* communication uses 3 bits plus chip select signals for each device
- *RS-232* (UART) communication requires 2 signals, and is normally only between two devices
Single wire communication

- *Parallel* communication uses 4 or 8 bits plus control signals
- *SPI* communication uses 3 bits plus chip select signals for each device
- *RS-232 (UART)* communication requires 2 signals, and is normally only between two devices
- *I²C* communication requires two signals and can involve several devices
Single wire communication

- **Parallel** communication uses 4 or 8 bits plus control signals.
- **SPI** communication uses 3 bits plus chip select signals for each device.
- **RS-232 (UART)** communication requires 2 signals, and is normally only between two devices.
- **I²C** communication requires two signals and can involve several devices.

Why does the number of signals matter?
- Single wire means all communication is *asynchronous*
• Single wire means all communication is *asynchronous*
• Bidirectional communication on a single line means low data rates
- Single wire means all communication is *asynchronous*
- Bidirectional communication on a single line means low data rates
- Bidirectional communication on a single line requires a pull-up resistor, like I^2C
SD-12

Data is transferred in 1200 baud, RS-232 format, 7 bit, even parity.

Master-slave configuration:
One master can communicate with up to 62 slaves.

Data, ground, and 12V lines used for environmental monitoring.

Terry Sturtevant
Electronics
Single Wire Communication
Data is transferred in 1200 baud, RS-232 format
Data is transferred in 1200 baud, RS-232 format
7 bit, even parity
SD-12

- Data is transferred in 1200 baud, RS-232 format
 7 bit, even parity
- Master-slave configuration
SD-12

- Data is transferred in 1200 baud, RS-232 format
 - 7 bit, even parity
- Master-slave configuration
 - One master can communicate with up to 62 slaves
Data is transferred in 1200 baud, RS-232 format
7 bit, even parity
Master-slave configuration
One master can communicate with up to 62 slaves
Data, ground, and 12V lines
SD-12

- Data is transferred in 1200 baud, RS-232 format
 7 bit, even parity
- Master-slave configuration
 One master can communicate with up to 62 slaves
- Data, ground, and 12V lines
- Used for environmental monitoring
From: SD-12 support group

Single wire communication

SD-12

DHT11, 22

Dallas 1-wire

DATA RECORDER

- break (at least 12 milliseconds)

SENSOR

- command
- response

- marking at least 8.33 milliseconds

- marking 8.33 milliseconds

SDI-12 Data Line

- sensor must respond within 15 milliseconds
- *maximum time

The maximum time for a response to a DB command, to get a high volume binary data packet, is 10.1 seconds.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>380</td>
<td>most commands</td>
</tr>
<tr>
<td>780</td>
<td>for a D command after a concurrent measurement</td>
</tr>
<tr>
<td>810</td>
<td>for a D command after a concurrent measurement, with CRC</td>
</tr>
</tbody>
</table>
From: Sentek

SD-12
DHT11,22

Proprietary format
Communication between one microprocessor and one device
Data, ground, and VDD (3.5 - 5.5V) lines
User for temperature and humidity sensors
40 bit data; 5 bytes: humidity H,L, temperature H,L, CRC
Minimum interval of 2 seconds between readings
DHT11,22

- Proprietary format
DHT11,22

- Proprietary format
- Communication between one microprocessor and one device
DHT11,22

- Proprietary format
- Communication between one microprocessor and one device
- Data, ground, and $V_{DD} \ (3.5 - 5.5V)$ lines
DHT11,22

- Proprietary format
- Communication between one microprocessor and one device
- Data, ground, and V_{DD} (3.5 - 5.5V) lines
- User for temperature and humidity sensors
DHT11,22

- Proprietary format
- Communication between one microprocessor and one device
- Data, ground, and V_{DD} (3.5 - 5.5V) lines
- User for temperature and humidity sensors
- 40 bit data; 5 bytes: humidity H,L, temperature H,L, CRC

Minimum interval of 2 seconds between readings
DHT11,22

- Proprietary format
- Communication between one microprocessor and one device
- Data, ground, and V_{DD} (3.5 - 5.5V) lines
- User for temperature and humidity sensors
- 40 bit data; 5 bytes: humidity H,L, temperature H,L, CRC
- Minimum interval of 2 seconds between readings
From Aosong datasheet

- **DHT11**
From Aosong datasheet

- AM2302
Dallas 1-wire
Dallas 1-wire

- Master-slave configuration
Dallas 1-wire

- Master-slave configuration
 - Each device has a 64 bit serial number
Dallas 1-wire

- Master-slave configuration
 - Each device has a 64 bit serial number
 - Devices are enumerated
Dallas 1-wire

- Master-slave configuration
 - Each device has a 64 bit serial number
 - Devices are enumerated
- Data and ground lines *only*
Dallas 1-wire

- Master-slave configuration
 - Each device has a 64 bit serial number
 - Devices are enumerated
- Data and ground lines *only*
 - Each device has a 800pF capacitor and gets power from the data line
Dallas 1-wire

- Master-slave configuration
 Each device has a 64 bit serial number
 Devices are enumerated
- Data and ground lines *only*
 Each device has a 800pF capacitor and gets power from the data line
- Lots of devices
From Wikipedia

1 Wire reset, write and read example with DS2432

1-wire

- Reset procedure
- Send byte x'11' (b"00110011")
- Read reset (first byte: family code x'33')