What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Terry Sturtevant
Wilfrid Laurier University
May 30, 2017
What is “Signal Conditioning”?

There are many factors which may prevent a signal produced by one device or circuit from being usable by another device or circuit, requiring some intermediate circuitry to bridge the gap. This kind of “bridging” function is doing what I call “signal conditioning”.

Terry Sturtevant
Electronics Signal Conditioning
What is “Signal Conditioning”?

There are many factors which may prevent a signal produced by one device or circuit from being usable by another device or circuit, requiring some intermediate circuitry to bridge the gap.
What is “Signal Conditioning”?

- There are many factors which may prevent a signal produced by one device or circuit from being usable by another device or circuit, requiring some intermediate circuitry to bridge the gap.
- This kind of “bridging” function is doing what I call “signal conditioning”.

Terry Sturtevant
Electronics Signal Conditioning
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:

1. analog; analog signal in, analog signal out
2. digital (including PWM); digital signal in, digital signal out
3. either; either kind of signal in; same type out
4. interface; involves both analog and digital signals in some way
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:

1. *analog*: analog signal in, analog signal out
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:

1. *analog*; analog signal in, analog signal out
2. *digital (including PWM)*; digital signal in, digital signal out
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:

1. **analog**; analog signal in, analog signal out
2. **digital (including PWM)**; digital signal in, digital signal out
3. **either**; either kind of signal in; same type out
Types of Signal Conditioning

Signal conditioning may be divided into 4 types:

1. **analog**; analog signal in, analog signal out
2. **digital (including PWM)**; digital signal in, digital signal out
3. **either**; either kind of signal in; same type out
4. **interface**; involves both analog and digital signals in some way
Analog Signal Conditioning

Types of Signal Conditioning

- Current Amplification
- Analog Signal Conditioning
- Digital
- Either Interface

Analog Signal Conditioning

- Amplification or attenuation
- Level shifting
- Filtering
- Impedance changing

All of the above functions can be performed by operational amplifier circuits.

- Clipping
- Clamping
Analog Signal Conditioning
Analog Signal Conditioning

- amplification or attenuation
Analog Signal Conditioning

- *amplification* or *attenuation*
- *level shifting*
Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
- impedance changing
Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
- impedance changing

All of the above functions can be performed by operational amplifier circuits.
Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
- impedance changing

All of the above functions can be performed by operational amplifier circuits. A couple of additional functions are
Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
- impedance changing

All of the above functions can be performed by operational amplifier circuits. A couple of additional functions are

- clipping
What is "Signal Conditioning"?

Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning

- amplification or attenuation
- level shifting
- filtering
- impedance changing

All of the above functions can be performed by operational amplifier circuits. A couple of additional functions are

- clipping
- clamping
What is "Signal Conditioning"?

Types of Signal Conditioning
- Current Amplification
- Analog Signal Conditioning
- Digital
- Either Interface

Amplification
What is "Signal Conditioning"?

Types of Signal Conditioning
- Current Amplification

Analog Signal Conditioning
- Digital
- Either
- Interface

Attenuation
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Inversion

Inversion
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

Level shifting
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

Clipping
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

Clamping

Terry Sturtevant

Electronics Signal Conditioning
Clipping

Often it's necessary to ensure that a signal does not exceed a certain voltage in order to avoid harming circuitry which follows. For instance, a sensor inside the engine of a car may pick up electrical noise of hundreds of volts occasionally which could destroy a microprocessor. To avoid this, the signal may be clipped so that it never goes above a fixed voltage. This can be done using a Zener diode.
Clipping

Often it’s necessary to ensure that a signal does not exceed a certain voltage in order to avoid harming circuitry which follows.
Clipping

- Often it’s necessary to ensure that a signal does not exceed a certain voltage in order to avoid harming circuitry which follows.
- For instance, a sensor inside the engine of a car may pick up electrical noise of hundreds of volts occasionally which could destroy a microprocessor.
Clipping

- Often it’s necessary to ensure that a signal does not exceed a certain voltage in order to avoid harming circuitry which follows.

- For instance, a sensor inside the engine of a car may pick up electrical noise of hundreds of volts occasionally which could destroy a microprocessor.

- To avoid this, the signal may be clipped so that it never goes above a fixed voltage.
Clipping

- Often it’s necessary to ensure that a signal does not exceed a certain voltage in order to avoid harming circuitry which follows.

- For instance, a sensor inside the engine of a car may pick up electrical noise of hundreds of volts occasionally which could destroy a microprocessor.

- To avoid this, the signal may be clipped so that it never goes above a fixed voltage.

This can be done using a Zener diode.
What is “Signal Conditioning”?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

\[V_i \]

\[R_z \]

\[V_o \]
The Zener diode will conduct once the voltage exceeds the Zener voltage, V_Z.
The Zener diode will conduct once the voltage exceeds the Zener voltage, V_Z.

The output voltage will follow the input until the input exceeds V_Z.

Terry Sturtevant
Electronics Signal Conditioning
The Zener diode will conduct once the voltage exceeds the Zener voltage, V_Z.

The output voltage will follow the input until the input exceeds V_Z.

From then on the output will not increase.
The Zener diode will conduct once the voltage exceeds the Zener voltage, V_Z.

The output voltage will follow the input until the input exceeds V_Z.

From then on the output will not increase.

The resistor should be chosen so that the maximum current through the diode is within the specified limits.
Clamping

It may sometimes be necessary to ensure that a signal does not become negative. Again, using the car sensor example, a negative voltage due to noise could destroy a microprocessor. To avoid this, the signal may be clamped so that it never goes below zero. This can be done using a diode.
Clamping

- It may sometimes be necessary to ensure that a signal does not become negative.
Clamping

- It may sometimes be necessary to ensure that a signal does not become negative.
- Again, using the car sensor example, a negative voltage due to noise could destroy a microprocessor.
Clamping

- It may sometimes be necessary to ensure that a signal does not become negative.
- Again, using the car sensor example, a negative voltage due to noise could destroy a microprocessor.
- To avoid this, the signal may be **clamped** so that it never goes below zero.
Clamping

- It may sometimes be necessary to ensure that a signal does not become negative.
- Again, using the car sensor example, a negative voltage due to noise could destroy a microprocessor.
- To avoid this, the signal may be clamped so that it never goes below zero.
- This can be done using a diode.
What is "Signal Conditioning"?

Types of Signal Conditioning

- Current Amplification
- Analog Signal Conditioning
- Digital
- Either
- Interface

![Electronics Signal Conditioning](Image)
The diode will conduct once it is forward biased.
The diode will conduct once it is forward biased.

The output voltage will follow the input until the input goes below about $-0.7V$.
The diode will conduct once it is forward biased.
The output voltage will follow the input until the input goes below about \(-0.7\, V\).
From then on the output will not decrease.
The diode will conduct once it is forward biased.
The output voltage will follow the input until the input goes below about $-0.7\,V$.
From then on the output will not decrease.
(This slight negative voltage will not be a problem for most electronics.)
The diode will conduct once it is forward biased.

The output voltage will follow the input until the input goes below about $-0.7V$.

From then on the output will not decrease.

(This slight negative voltage will not be a problem for most electronics.)

The resistor should be chosen so that the maximum current through the diode is within the specified limits.
Digital

Sometimes digital signals in a system need to be cleaned up. This can be in order to do one or both of:

- remove noise from the signal
- change the duration of the signal

These two cases will now be discussed.
What is "Signal Conditioning"?
Types of Signal Conditioning
Current Amplification
Analog Signal Conditioning
Digital
Either Interface

Sometimes digital signals in a system need to be cleaned up. This can be in order to do one or both of:
remove noise from the signal
change the duration of the signal
These two cases will now be discussed.

Digital
Sometimes digital signals in a system need to be *cleaned up.*
Digital

- Sometimes digital signals in a system need to be *cleaned up*.
- This can be in order to do one or both of:
Digital

- Sometimes digital signals in a system need to be *cleaned up*.
- This can be in order to do one or both of:
 - remove noise from the signal
Sometimes digital signals in a system need to be *cleaned up*. This can be in order to do one or both of:
- remove noise from the signal
- change the duration of the signal
Sometimes digital signals in a system need to be *cleaned up*. This can be in order to do one or both of:

- remove noise from the signal
- change the duration of the signal

These two cases will now be discussed.
Removing Noise
Removing Noise

Detecting the state of a digital signal can be difficult if the signal contains noise.
Removing Noise

- Detecting the state of a digital signal can be difficult if the signal contains noise.
- A **Schmitt trigger** is a gate which uses *hysteresis* to remove noise from a signal.
Removing Noise

- Detecting the state of a digital signal can be difficult if the signal contains noise.
- A **Schmitt trigger** is a gate which uses *hysteresis* to remove noise from a signal.
- This is in contrast to an ordinary gate, where the output changes state as the input passes some unknown voltage between the manufacturer’s specified $V_{i\text{hmin}}$ and $V_{i\text{lmax}}$.
For a Schmitt trigger, there are two separate voltages.
For a Schmitt trigger, there are two separate voltages.

When the output is low, the input has to go above V_{on} before the output will go high,
For a Schmitt trigger, there are two separate voltages.

When the output is low, the input has to go above V_{on} before the output will go high, and when the output is high, the input has to go below V_{off} before the output will go low.
For a Schmitt trigger, there are two separate voltages.

When the output is low, the input has to go above V_{on} before the output will go high, and when the output is high, the input has to go below V_{off} before the output will go low.

The farther apart V_{on} and V_{off} are, the more noise immunity is provided.
For a Schmitt trigger, there are two separate voltages.

- When the output is low, the input has to go above V_{on} before the output will go high,

and when the output is high, the input has to go below V_{off} before the output will go low.

- The farther apart V_{on} and V_{off} are, the more *noise immunity* is provided.

(For a normal gate, is it as though V_{on} and V_{off} are the same.)
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

Normal TTL transfer characteristic
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

Normal TTL transfer characteristic

\[V_{on} = V_{off} \]
Schmitt trigger transfer characteristic; (i.e. with hysteresis)
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Schmitt trigger transfer characteristic; (i.e. with hysteresis)
Schmitt trigger transfer characteristic; (i.e. with hysteresis)
What is “Signal Conditioning”? Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

Schmitt trigger transfer characteristic; (i.e. with hysteresis)
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_{on}

V_i

V_{off}

V_{on} and V_{off} both LOW

V_o
What is “Signal Conditioning”? Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either Interface

V_i goes above V_{on}, so V_o goes HIGH
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

\[V_{on} \]

\[V_{off} \]

\[V_i \]

\[V_o \]

\(V_i \) doesn’t go below \(V_{off} \), so \(V_o \) stays HIGH
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_i goes below V_{off}, so V_o goes LOW
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_i doesn’t go above V_{on}, so V_o stays LOW
Another use of a Schmitt trigger is to *sharpen edges*.
Another use of a Schmitt trigger is to *sharpen edges*.

Especially when there is capacitance in the system, pulses can become less square.
Another use of a Schmitt trigger is to *sharpen edges*.

Especially when there is capacitance in the system, pulses can become less square.

If this is a problem for subsequent circuitry, then a Schmitt trigger can restore sharp edges.
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either Interface

\[V_{on} \quad V_{i} \quad V_{off} \]

\[V_{o} \]

\[V_{o \text{ LOW}} \]
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

V_i goes above V_{on}, so V_o goes HIGH
What is “Signal Conditioning”?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_i isn’t below V_{off}, so V_o stays HIGH
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_{on}

V_{off}

V_i

V_o

V_i goes below V_{off}, so V_o goes LOW
What is "Signal Conditioning"?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

- V_{on}
- V_{off}
- V_i
- V_o

V_i isn’t above V_{on}, so V_o stays LOW
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_i goes above V_{on}, so V_o goes HIGH
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

V_i isn’t below V_{off}, so V_o stays HIGH
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

\[V_{on} \]
\[V_{off} \]

\[V_i \]

\[V_o \]

\(V_i \) goes below \(V_{off} \), so \(V_o \) goes LOW
Changing Pulse Width
Changing Pulse Width

A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
Changing Pulse Width

- A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
- This can be accomplished by the use of a **one shot**.
Changing Pulse Width

- A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
- This can be accomplished by the use of a **one shot**.
- When a **trigger pulse** (i.e. the signal) is received by a one shot, its output will produce a pulse of a fixed length.
Changing Pulse Width

- A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
- This can be accomplished by the use of a **one shot**.
- When a **trigger pulse** (i.e. the signal) is received by a one shot, its output will produce a pulse of a fixed length.

There are two types of one shots:
Changing Pulse Width

- A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
- This can be accomplished by the use of a **one shot**.
- When a **trigger pulse** (i.e. the signal) is received by a one shot, its output will produce a pulse of a fixed length.

There are two types of one shots:

- **retriggerable**
Changing Pulse Width

- A common situation occurs when a signal needs to be extended in time so that it will be detected by a microprocessor.
- This can be accomplished by the use of a **one shot**.
- When a **trigger pulse** (i.e. the signal) is received by a one shot, its output will produce a pulse of a fixed length.

There are two types of one shots:

- **retriggerable**
- **non-retriggerable**
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either Interface

Terry Sturtevant
Electronics Signal Conditioning
What is “Signal Conditioning”?
Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

trigger

non-retriggerable output
What is “Signal Conditioning”? Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

Current Amplification

trigger
non-retriggerable output
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

trigger
retriggerable output
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

Terry Sturtevant

Electronics Signal Conditioning
What is "Signal Conditioning"?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

Terry Sturtevant
Electronics Signal Conditioning
What is “Signal Conditioning”? Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

trigger

non-retriggerable output

retriggerable output
What is “Signal Conditioning”? Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either Interface

Terry Sturtevant

Electronics Signal Conditioning
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

The situation which differentiates retriggerable and non-retriggerable outputs.
With a retriggerable one shot, if a second trigger pulse occurs while the output is active (i.e. during a pulse created by a previous trigger pulse), the output will be extended for a further period.
With a retriggerable one shot, if a second trigger pulse occurs while the output is active (i.e. during a pulse created by a previous trigger pulse), the output will be extended for a further period.

In this way a pulse can be extended indefinitely.
With a retriggerable one shot, if a second trigger pulse occurs while the output is active (i.e. during a pulse created by a previous trigger pulse), the output will be extended for a further period.

In this way a pulse can be extended indefinitely.

With a non-retriggerable one shot, any trigger pulses occurring while the output is active, (i.e. during a pulse created by a previous trigger pulse), will be ignored.
With a retriggerable one shot, if a second trigger pulse occurs while the output is active (i.e. during a pulse created by a previous trigger pulse), the output will be extended for a further period.

In this way a pulse can be extended indefinitely.

With a non-retriggerable one shot, any trigger pulses occurring while the output is active, (i.e. during a pulse created by a previous trigger pulse), will be ignored.

In other words, the output pulse is always the same length.
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification
Analog Signal Conditioning
Digital
Either
Interface

The purpose of isolation is to remove large DC offsets from a signal. (Of course it could be to add a DC offset instead.) An op-amp can be used to remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed. (For instance, inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels. The spark plug voltages could not be directly sensed by the microprocessor. At least more than once.....)

Terry Sturtevant
Electronics Signal Conditioning
What is “Signal Conditioning”?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

The purpose of isolation is to remove large DC offsets from a signal.
The purpose of *isolation* is to remove large DC offsets from a signal.

(Of course it could be to add a DC offset instead.)

An op-amp can be used to remove small DC offsets, of the same order of voltage as the supply voltage.
The purpose of *isolation* is to remove large DC offsets from a signal.

(Of course it could be to add a DC offset instead.)

An op-amp can be used to remove small DC offsets, of the same order of voltage as the supply voltage.

Sometimes hundreds or thousands of volts must be removed.
The purpose of **isolation** is to remove large DC offsets from a signal.

(Of course it could be to add a DC offset instead.)

An op-amp can be used to remove small DC offsets, of the same order of voltage as the supply voltage.

Sometimes hundreds or thousands of volts must be removed.

(For instance, inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels.)
The purpose of **isolation** is to remove large DC offsets from a signal.
(Of course it could be to add a DC offset instead.)

An op-amp can be used to remove small DC offsets, of the same order of voltage as the supply voltage.
Sometimes hundreds or thousands of volts must be removed.
(For instance, inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels.
The spark plug voltages could not be directly sensed by the microprocessor. At least more than once......)
Inductive isolation using a transformer
Inductive isolation using a transformer

- cannot transmit DC (i.e. steady-state) values
Inductive isolation using a transformer

- cannot transmit DC (i.e. steady-state) values
- 2 way
Inductive isolation using a transformer

- cannot transmit DC (i.e. steady-state) values
- 2 way
- can transmit power
Inductive isolation using a transformer

- cannot transmit DC (i.e. steady-state) values
- 2 way
- can transmit power
- the above two conditions mean that care must be taken as voltage spikes at the input end can be transmitted to the input end and vice versa
Keep in mind that different numbers of windings in the two coils allow the input signal to be increased or decreased while any DC offset is removed.
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

\[V_i \rightarrow \text{Current Amplifier} \rightarrow V_o \]
Optical isolation using an LED and a phototransistor or photodiode
Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power
Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power
- the above two conditions mean that there is no danger of voltage spikes as there is with inductive isolation
The resistors are used because effectively the LED and the phototransistor are current devices, and usually signals are processed as voltages.
The resistors are used because effectively the LED and the phototransistor are *current* devices, and usually signals are processed as voltages.

The values chosen for the resistors should be consistent with the current specifications for the device.
The resistors are used because effectively the LED and the phototransistor are current devices, and usually signals are processed as voltages.

The values chosen for the resistors should be consistent with the current specifications for the device.

The amount of DC isolation provided by an optoisolator is usually in the range of kV.
The resistors are used because effectively the LED and the phototransistor are *current* devices, and usually signals are processed as voltages.

The values chosen for the resistors should be consistent with the current specifications for the device.

The amount of DC isolation provided by an optoisolator is usually in the range of kV.

At some point the insulation will break down and arcs can occur.
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
 Either
Interface

Terry Sturtevant
Electronics Signal Conditioning
Whenever sensors are in a place where it is possible for high voltages to be induced, optical isolation should be used to protect electronic devices which follow.
Analog Comparators
Analog Comparators

Two analog voltages can be compared with an analog comparator. This device is basically an operational amplifier with a digital output, so that the output indicates which of the inputs is higher.
Analog Comparators

- Two analog voltages can be compared with an analog comparator.
Analog Comparators

- Two analog voltages can be compared with an analog comparator.
- This device is basically an operational amplifier with a digital output, so that the output indicates which of the inputs is higher.
Analog Switches and Multiplexers
Analog Switches and Multiplexers

An analog switch works just like a mechanical switch in allowing an analog signal to flow between two points in a circuit when it is closed, and preventing the flow when it is open. The difference with an analog switch is that the control of the opening and closing of the switch is provided by a digital signal. Like mechanical switches, there are a variety of switch types, such as SPST, SPDT, DPDT, and so on. The resistor R_{on} is to indicate a finite resistance between the input and output when the switch is closed. The value of R_{on} should be in the device specifications.
An analog switch works just like a mechanical switch in allowing an analog signal to flow between two points in a circuit when it is closed, and preventing the flow when it is open. The difference with an analog switch is that the control of the opening and closing of the switch is provided by a digital signal. Like mechanical switches, there are a variety of switch types, such as SPST, SPDT, DPDT, and so on. The resistor R_{on} is to indicate a finite resistance between the input and output when the switch is closed. The value of R_{on} should be in the device specifications.
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning

Digital

Either

Interface

\[V_i \rightarrow R_{on} \rightarrow V_o \]

\[V_c \]
What is “Signal Conditioning”?
Types of Signal Conditioning
Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

\[V_i \]
\[R_{on} \]
\[V_c \]
\[V_o \]
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

Analog Signal Conditioning
Digital
Either
Interface

\[V_c \]
\[V_i \]
\[R_{on} \]

\[V_o \]
An **analog multiplexer** is similar to a digital multiplexer in that a set of digital signals controls which *analog* signal is passed through to the output. Since the internal construction is similar to that of an analog switch, there is an “on” resistance as before.
Current Amplification

Operational amplifiers make good voltage amplifiers, but usually their current output is very limited. Current amplification is a job more suited to transistors.
Current Amplification

Operational amplifiers make good *voltage* amplifiers, but usually their current output is very limited. *Current amplification* is a job more suited to transistors.
What is "Signal Conditioning"?
Types of Signal Conditioning
Current Amplification

Basic BJT Operation

The BJT operates as a current amplifier. In the common emitter configuration, controlling the current to the base results in change to the collector current. Since $\beta = \frac{I_c}{I_b} \approx 100 \rightarrow 500$, then a substantial increase in current is possible. A few choices of how to do this in a circuit follow. (NPN transistors will be assumed. It's easy to change to PNP after you understand the principles.)
The BJT operates as a current amplifier. In the common emitter configuration, controlling the current to the base results in change to the collector current. Since

\[\beta = \frac{I_c}{I_b} \approx 100 \rightarrow 500 \]

then a substantial increase in current is possible. A few choices of how to do this in a circuit follow. (NPN transistors will be assumed. It’s easy to change to PNP after you understand the principles.)
Darlington Transistors

If a very great current gain is desired, i.e. up to \(\approx 1000 \times \), a Darlington configuration may be used. This has the emitter of one transistor fed directly into the base of another, with the collectors in common. In this way the two \(\beta \) values get multiplied, so a much greater gain is possible. Darlington transistors are devices which are connected this way internally, so they look like an ordinary transistor from the outside.
Darlington Transistors

If a very great current gain is desired, i.e. up to $\approx 1000 \times$, a **Darlington** configuration may be used. This has the emitter of one transistor fed directly into the base of another, with the collectors in common. In this way the two β values get multiplied, so a much greater gain is possible. **Darlington transistors** are devices which are connected this way internally, so they look like an ordinary transistor from the outside.
Grounded Load
Grounded Load

In this configuration, the load, shown as a resistance R_l, is placed between the emitter of the transistor and ground. It is often useful to have one end of the load grounded. For a transistor to be “on”, the base–emitter junction must be forward biased so

$$V_{be} \geq 0.7V$$

This means that the base of the transistor must be able to go above the highest load voltage desired.
Floating Load
Floating Load

If the base voltage cannot easily be raised above the desired load voltage, it is possible to place the load between the collector of the transistor and the supply voltage, and then ground the emitter of the transistor.
What is "Signal Conditioning"?

Types of Signal Conditioning

Current Amplification

\[V_{\text{supply}} \]

\[V_{\text{in}} \]

\[R_{b1} \]

\[R_{c1} \]

\[R_{b2} \]

\[\beta_1 \]

\[\beta_2 \]

\[V_o \]

\[R_L \]