Electronics
Resistive Sensors

Terry Sturtevant

Wilfrid Laurier University

May 31, 2017
Introduction to transducers
Introduction to transducers

- convert one form of energy to another
Introduction to transducers

- convert one form of energy to another
- electrical input transducer;
Introduction to transducers

- convert one form of energy to another
- electrical input transducer;
 output is some form of electrical property
Introduction to transducers

- convert one form of energy to another
- electrical input transducer;
 output is some form of electrical property
 \((i,v,r,c,l,\nu,\ etc.)\)
Introduction to transducers

- convert one form of energy to another
- electrical input transducer;
 output is some form of electrical property
 (i,v,r,c,l,nu, etc.)
- input transducer = sensor
Introduction to transducers

- convert one form of energy to another
- electrical input transducer;
 output is some form of electrical property
 (i,v,r,c,l,nu, etc.)
- input transducer = sensor
- output transducer = actuator
Resistive sensors

A resistive sensor is a resistor which changes according to some physical change in its environment. Some examples would be:

- **Potentiometer**: the resistance varies with physical movement
- **Photoresistor**: the resistance varies with light
- **Thermistor**: the resistance varies with heat
- **Strain gauge (or gage)**: the resistance varies with stress or compression
- **Force-dependent resistor**: the resistance varies with applied pressure

Terry Sturtevant
A **resistive sensor** is a resistor which changes according to some physical change in its environment.
Resistive sensors

A resistive sensor is a resistor which changes according to some physical change in its environment. Some examples would be:
Resistive sensors

A *resistive sensor* is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer;
Resistive sensors

A resistive sensor is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor;

Terry Sturtevant
Electronics Resistive Sensors
Resistive sensors

A resistive sensor is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
Resistive sensors

A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor;
Resistive sensors

A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
Resistive sensors

A resistive sensor is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
- Strain gauge (or gage);
Resistive sensors

A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
- Strain gauge (or gage); the resistance varies with *stress* or *compression*
A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
- Strain gauge (or gage); the resistance varies with *stress or compression*
- Force-dependent resistor;
Resistive sensors

A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
- Strain gauge (or gage); the resistance varies with *stress* or *compression*
- Force-dependent resistor; the resistance varies with *applied pressure*
Here’s an example of how a strain gauge works.
$R = \rho \frac{L}{A}$
Resistive sensors

Resistive sensors in voltage dividers

\[R' = \rho \frac{(L-\Delta L)}{(A+\Delta A)} < R \]
Resistive sensors

Resistive sensors in voltage dividers

\[R = \rho \frac{L}{A} \]

Resistance
Sensors

Resistive sensors in voltage dividers

Resistance

Terry Sturtevant
Electronics Resistive Sensors
Resistive sensors in voltage dividers

\[R' = \rho \frac{(L+\Delta L)}{(A-\Delta A)} > R \]
Thermistors

This is the resistance/temperature curve for a thermistor.
Thermistors

This is the resistance/temperature curve for a thermistor.
Thermistors

This is the resistance/temperature curve for a thermistor.
Resistive sensors in voltage dividers

\[V_{out} = V_{in} \left(\frac{R_2}{R_1 + R_2} \right) \]

True if \(I_{out} \equiv 0 \)
If we want to put a variable resistor in a voltage divider, then we need to *choose* the other resistor.
If we want to put a variable resistor in a voltage divider, then we need to *choose* the other resistor.

To make the output vary *over as large a range as possible* as the variable resistor goes from R_{min} to R_{max}, it turns out we want to choose the other resistor, R so that

$$R = \sqrt{R_{min} \times R_{max}}$$
If we want to put a variable resistor in a voltage divider, then we need to choose the other resistor.

To make the output vary over as large a range as possible as the variable resistor goes from R_{min} to R_{max}, it turns out we want to choose the other resistor, R so that

$$R = \sqrt{R_{\text{min}} \times R_{\text{max}}}$$