Electronics
Optical Isolation

Terry Sturtevant

Wilfrid Laurier University

November 10, 2016
Isolation

The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead. Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed. For example, inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels. The spark plug voltages could not be directly sensed by the microprocessor.
Isolation

- The purpose is to remove large DC offsets from a signal;
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
- Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage.
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
- Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed.
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
- Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed.

E.g. inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels.
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
- Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed.
 e.g. inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels.
- The spark plug voltages could not be directly sensed by the microprocessor.
Isolation

- The purpose is to remove large DC offsets from a signal; it could be to add a DC offset instead.
- Op-amps can remove small DC offsets, of the same order of voltage as the supply voltage. Sometimes hundreds or thousands of volts must be removed.
 e.g. inside a car engine, the ignition system produces sparks of thousands of volts, while the electronics runs on normal logic levels.
 The spark plug voltages could not be directly sensed by the microprocessor.
 At least more than once.....)
Basic Optoisolator
Basic Optoisolator

A photodiode in a voltage divider in photocurrent mode operates somewhat like a Zener diode where the Zener voltage is reduced by light.
Basic Optoisolator

A photodiode in a voltage divider in photocurrent mode operates somewhat like a Zener diode where the Zener voltage is reduced by light.
Basic Optoisolator
Basic Optoisolator

A phototransistor is like a transistor with a photodiode which feeds into the base.
Basic Optoisolator

A phototransistor is like a transistor with a photodiode which feeds into the base.
Isolation

Optical Isolation
Characteristics of Optical Isolation
Using Optoisolators in a Circuit
Calculations for the use of optoisolators
You can think of the photosensitive device like a photoresistor.
Optical Isolation
Characteristics of Optical Isolation
Using Optoisolators in a Circuit
Calculations for the use of optoisolators
When the LED conducts, the resistance between the outputs is reduced.
Optical Isolation
Characteristics of Optical Isolation
Using Optoisolators in a Circuit
Calculations for the use of optoisolators

Terry Sturtevant
Electronics Optical Isolation
Isolation

Optical Isolation
Characteristics of Optical Isolation
Using Optoisolators in a Circuit
Calculations for the use of optoisolators
Characteristics of Optical Isolation
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power
- the above two conditions mean that there is
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power
- the above two conditions mean that there is no danger of voltage spikes as there is
Characteristics of Optical Isolation

Optical isolation using an LED and a phototransistor or photodiode

- can transmit DC (i.e. steady-state values)
- only one way
- cannot transmit power

The above two conditions mean that there is no danger of voltage spikes as there is with inductive isolation.
Using Optoisolators in a Circuit

Note that the grounds on the two sides need not be the same.
Using Optoisolators in a Circuit

Note that the grounds on the two sides need not be the same.

Terry Sturtevant
Electronics Optical Isolation
Using Optoisolators in a Circuit

Note that the grounds on the two sides need not be the same.
The LED and the phototransistor are *current* devices.
The LED and the phototransistor are *current* devices. Usually signals are processed as voltages.
The LED and the phototransistor are *current* devices. Usually signals are processed as voltages. Resistors are needed.
The LED and the phototransistor are current devices. Usually signals are processed as voltages. Resistors are needed. Values chosen should be consistent with the current specifications for the device.
The LED and the phototransistor are *current* devices. Usually signals are processed as voltages. Resistors are needed. Values chosen should be consistent with the current specifications for the device.

The amount of DC isolation provided by an optoisolator is usually in the range of kV.
The LED and the phototransistor are *current* devices. Usually signals are processed as voltages. Resistors are needed. Values chosen should be consistent with the current specifications for the device.

The amount of DC isolation provided by an optoisolator is usually in the range of kV. At some point the insulation will break down and arcs can occur.
An optoisolator can be connected either to have the output voltage increase when the input increases, or to have the output voltage decrease when the input increases.
An optoisolator can be connected either to have the output voltage increase when the input increases, or to have the output voltage decrease when the input increases. You should be comfortable with both.
Isolation

Characteristics of Optical Isolation

Using Optoisolators in a Circuit

Calculations for the use of optoisolators

\[V_{\text{out}} \]

\[V_{\text{supply}} \]
Optical Isolation
Characteristics of Optical Isolation
Using Optoisolators in a Circuit
Calculations for the use of optoisolators
Whenever sensors are in a place where it is possible for high voltages to be induced, optical isolation should be used to protect electronic devices which follow.
Calculations for the use of optoisolators
Calculations for the use of optoisolators

From the data sheet, determine the values for:

- recommended forward current for the LED
- typical forward voltage for the LED
- typical current transfer ratio for the photodiode or phototransistor

Together these will make it possible to calculate resistance values.
Calculations for the use of optoisolators

From the data sheet, determine the values for:

- recommended *forward current* for the LED
Calculations for the use of optoisolators

From the data sheet, determine the values for:

- recommended *forward current* for the LED
- typical *forward voltage* for the LED
Calculations for the use of optoisolators

From the data sheet, determine the values for:

- recommended *forward current* for the LED
- typical *forward voltage* for the LED
- typical *current transfer ratio* for the photodiode or phototransistor
Calculations for the use of optoisolators

From the data sheet, determine the values for:

- recommended *forward current* for the LED
- typical *forward voltage* for the LED
- typical *current transfer ratio* for the photodiode or phototransistor

Together these will make it possible to calculate resistance values.
Input side

The LED and resistor form a voltage divider. Given the input HIGH logic level, the forward voltage of the LED, the voltage across the resistor can be determined. Given the forward current of the LED, it should be possible to determine the resistance which will give this current.
Input side

The LED and resistor form a voltage divider. Given the
Input side

The LED and resistor form a voltage divider. Given the

- input HIGH logic level
Input side

The LED and resistor form a voltage divider. Given the
- input HIGH logic level
- forward voltage of the LED
Input side

The LED and resistor form a voltage divider. Given the

- input HIGH logic level
- forward voltage of the LED

the *voltage* across the resistor can be determined.
Input side

The LED and resistor form a voltage divider. Given the
- input HIGH logic level
- forward voltage of the LED
the voltage across the resistor can be determined.
Given the
Input side

The LED and resistor form a voltage divider. Given the
- input HIGH logic level
- forward voltage of the LED
the voltage across the resistor can be determined.
Given the
- forward current of the LED
Input side

The LED and resistor form a voltage divider. Given the
- input HIGH logic level
- forward voltage of the LED

the **voltage** across the resistor can be determined. Given the
- forward current of the LED

it should be possible to determine the **resistance** which will give this current.
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the forward current of the LED, the recommended current through the resistor can be determined. Given the output supply voltage and output HIGH logic level, it should be possible to determine the resistance which will give this current.
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
- current transfer ratio
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
- current transfer ratio

the *recommended current* through the resistor can be determined.
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
- current transfer ratio

the *recommended current* through the resistor can be determined. Given the
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
- current transfer ratio

the *recommended current* through the resistor can be determined. Given the

- output supply voltage
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the forward current of the LED and the current transfer ratio, the recommended current through the resistor can be determined. Given the output supply voltage and output HIGH logic level...
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the

- forward current of the LED
- current transfer ratio

the \textit{recommended current} through the resistor can be determined. Given the

- output supply voltage
- output HIGH logic level

it should be possible to determine the \textit{resistance} which will give this current.
Output side

The photodiode (or phototransistor) and the resistor form a voltage divider. Given the
- forward current of the LED
- current transfer ratio

the recommended current through the resistor can be determined. Given the
- output supply voltage
- output HIGH logic level

it should be possible to determine the resistance which will give this current.