Electronics DC Motor with Shaft Encoder

Terry Sturtevant

Wilfrid Laurier University

November 1, 2018

Terry Sturtevant Electronics DC Motor with Shaft Encoder

• • = • • = •

Shaft encoders

Terry Sturtevant Electronics DC Motor with Shaft Encoder

Ξ.

• Incremental rotary encoding

• • = • • = •

 Incremental rotary encoding two channels

• • = • • = •

 Incremental rotary encoding two channels

As long as you know the initial position, you can update if you can sense changes.

★ ∃ ► < ∃ ►</p>

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

There are 30 teeth, so the encoder has 12° resolution.

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

Here's how it fits in the case.

・ロト ・ 四ト ・ ヨト ・ ヨト

There's no electrical connection between motor and shaft encoder.

イロト イポト イヨト イヨト

Here are the two parts identified.

э

★ ∃ ► < ∃ ►</p>

Here are the motor connections.

▶ ★ 문 ▶ ★ 문 ▶

Here are the shaft encoder connections.

э

★ ∃ ► < ∃ ►</p>

There is not even a common ground.

イロト イヨト イヨト イヨト

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

• Shaft encoder wheel

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト ・

- Shaft encoder wheel
- Two sensors will allow determination of rotation *speed* and *angle*

▲御▶ ▲ 臣▶ ▲ 臣▶

Clockwise

・ロト ・ 四ト ・ ヨト ・ ヨト

ヘロト ヘロト ヘビト ヘビト

イロト イヨト イヨト イヨト

・ロト ・ 四ト ・ ヨト ・ ヨト

• Counter-clockwise

Counter-clockwise

Counter-clockwise

Counter-clockwise

- Shaft encoder timing
- 1
- 1

- Shaft encoder timing
- 0
- 0

- Shaft encoder timing
- 0
- 0

ヘロト ヘロト ヘビト ヘビト

- Shaft encoder timing
- 1
- 0

- Shaft encoder timing
- 1
- 0

- Shaft encoder timing
- 1
- 0

イロト イヨト イヨト イヨト

- Shaft encoder timing
- 1
- 1

• Speed of rotation from frequency of either channel

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Speed of rotation from frequency of either channel
- Angle of rotation from combination

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Speed of rotation from frequency of either channel
- Angle of rotation from combination

Here's an example from an actual motor.

伺 と く ヨ と く ヨ と …

One direction

<ロト < 回 > < 回 > < 回 > < 回 > <

Other direction

ヘロト ヘロト ヘビト ヘビト

Period is 5 divisions

<ロト < 回 > < 回 > < 回 > < 回 > <

Period is 5 divisions Time scale is 500μ S per division

Period is 5 divisions \rightarrow 2500 $\mu S=2.5mS$ Time scale is 500 μS per division

Period is 5 divisions \rightarrow 2500 μ S = 2.5mS 30 slots per revolution \times 2.5mS

Period is 2.5mS

30 slots per revolution \times 2.5mS \rightarrow 75ms per revolution

イロト イポト イヨト イヨト

Period is 2.5mS \times 30 \rightarrow 75ms per revolution 75/1000 seconds per revolution \rightarrow 13.33 rev./second

イロト イポト イヨト イヨト

Period is 2.5mS \times 30 \rightarrow 75ms per revolution 75/1000 seconds per revolution \rightarrow 13.33 rev./second \times 60 \rightarrow 800 RPM

・ 戸 ト ・ ヨ ト ・ ヨ ト