Electronics
Logic Gates: Measuring Voltage Limits

Terry Sturtevant

Wilfrid Laurier University

November 20, 2014
Input voltages will not always be at ideal values.
• Input voltages will not always be at ideal values
 a range of input values must be considered high

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Input voltages will not always be at ideal values. A range of input values must be considered high. Another range of input values must be considered low.
• Input voltages will not always be at ideal values. A range of input values must be considered high. Another range of input values must be considered low.

• Similarly, output voltages will not always be at ideal values. A range of output values should be considered high. Another range of output values should be considered low.
• Input voltages will not always be at ideal values, a range of input values must be considered high
 another range of input values must be considered low.
• Similarly output voltages will not always be at ideal values, a range of output voltages should be considered high
Input voltages will not always be at ideal values, a range of input values must be considered high, another range of input values must be considered low.

Similarly output voltages will not always be at ideal values, a range of output voltages should be considered as high, another range of output voltages should be considered low.
\(V_{IH_{\text{min}}} \)
\(V_{IH_{\text{min}}} \)

the *minimum* input voltage which will be accepted as a logic 1.
• $V_{IH_{\text{min}}}$
 the \textit{minimum} input voltage which will be accepted as a logic 1.
• $V_{IL_{\text{max}}}$
- \(V_{IH_{\text{min}}} \)
 the *minimum* input voltage which will be accepted as a logic 1.

- \(V_{IL_{\text{max}}} \)
 the *maximum* input voltage which will be accepted as a logic 0.
- $V_{IH_{\text{min}}}$
 the *minimum* input voltage which will be accepted as a logic 1.
- $V_{IL_{\text{max}}}$
 the *maximum* input voltage which will be accepted as a logic 0.
- $V_{OH_{\text{min}}}$
- $V_{IH_{min}}$
 the *minimum* input voltage which will be accepted as a logic 1.
- $V_{IL_{max}}$
 the *maximum* input voltage which will be accepted as a logic 0.
- $V_{OH_{min}}$
 the *minimum* output voltage representing a logic 1 state.
- $V_{IH_{\text{min}}}$
 the *minimum* input voltage which will be accepted as a logic 1.
- $V_{IL_{\text{max}}}$
 the *maximum* input voltage which will be accepted as a logic 0.
- $V_{OH_{\text{min}}}$
 the *minimum* output voltage representing a logic 1 state.
- $V_{OL_{\text{max}}}$
- $V_{IH_{\min}}$
 the *minimum* input voltage which will be accepted as a logic 1.
- $V_{IL_{\max}}$
 the *maximum* input voltage which will be accepted as a logic 0.
- $V_{OH_{\min}}$
 the *minimum* output voltage representing a logic 1 state.
- $V_{OL_{\max}}$
 the *maximum* output voltage representing a logic 0 state.
The actual limits on voltage, current, timing, etc. will be given in manufacturer’s data sheets. Different manufacturers arrange their data sheets differently, and use different names.
Reading Data sheets

The actual limits on voltage, current, timing, etc. will be given in manufacturer’s data sheets.
The actual limits on voltage, current, timing, etc. will be given in manufacturer’s *data sheets*. Different manufacturers arrange their data sheets differently, and use different names.
Supply voltage Designations

The supply voltages for various families have names which are based on the type of transistors used in their construction. For instance, TTL gates are made with bipolar transistors, which have a collector and an emitter, the supply voltages are V_{CC} and GROUND is occasionally given as V_{EE}.

On the other hand, CMOS gates are built with field–effect transistors which have a drain and a source, the supply voltages are V_{DD} and V_{SS}.

Terry Sturtevant

Electronics Logic Gates: Measuring Voltage Limits
The supply voltages for various families have names which are based on the type of transistors used in their construction.
The supply voltages for various families have names which are based on the type of transistors used in their construction. For instance, TTL gates are made with bipolar transistors, which have a collector and an emitter, the supply voltages are V_{CC} and GROUND is occasionally given as V_{EE}.
Supply voltage Designations

- The supply voltages for various families have names which are based on the type of transistors used in their construction. For instance, TTL gates are made with bipolar transistors, which have a collector and an emitter, the supply voltages are V_{CC} and GROUND is occasionally given as V_{EE}.

- On the other hand, CMOS gates are built with field–effect transistors which have a drain and a source, the supply voltages are V_{DD} and V_{SS}.
Measuring voltage limits

In order to measure the voltage limits, you can connect up the circuit as in the following figure.
Measuring voltage limits

In order to measure the voltage limits, you can connect up the circuit as in the following figure.
Real logic gates
Measuring voltage limits

V_{cc}
V_{in}
GND
Using a sine wave input with the oscilloscope operating in the X–Y mode, a trace similar to the one shown in the following figure should be obtained.
Using a sine wave input with the oscilloscope operating in the X–Y mode, a trace similar to the one shown in the following figure should be obtained.
(The output shown is for an LSTTL *inverting* gate.)
V_{in}
Real logic gates
Measuring voltage limits

\[V_{out} \]

\[V_{in} \]

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

![Diagram showing voltage limits for logic gates](image)

- $V_{OH_{min}}$
- V_{out}
- V_{in}

Logic "0" input

V_{in}: 0.8

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates

Measuring voltage limits

V_{in} V_{out}

logic “1” input

Terry Sturtevant

Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

\[V_{out} \]

\[V_{OL_{\text{max}}} \]

\[V_{in} \]

2.0

logic "1" input

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

\[V_{out} \]

\[V_{in} \]

- 0.5
logic "0"
output

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

V_{\text{in}} \quad V_{\text{out}}

- 0.5
logic “0”
output

V_{\text{IH_{min}}}

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

logic "1"
output
-
2.7

V_{out}

V_{in}

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits
Real logic gates

Measuring voltage limits

logic “1” output

V_{out}

$V_{IL_{max}}$ V_{in}

V_{in}

2.7
This is called the **transfer characteristic** of the gate.
This is called the **transfer characteristic** of the gate. Note that the input voltage, V_{in}, is on the X axis and the output voltage, V_{out}, on the Y axis.
Real logic gates

Measuring voltage limits

V_{out}

V_{in}

Terry Sturtevant

Electronics Logic Gates: Measuring Voltage Limits
Real logic gates
Measuring voltage limits

CMOS will look slightly different.
Measuring Output Voltage Limits

The output voltage produced by an input voltage of the specified value of $V_{IL_{\text{max}}}$ would be the measured value of $V_{OH_{\text{min}}}$.

The output voltage is produced by an input voltage of the specified value of $V_{IH_{\text{min}}}$ would be the measured value of $V_{OL_{\text{max}}}$.
The output voltage produced by an input voltage of the specified value of $V_{IL_{\text{max}}}$ would be the measured value of $V_{OH_{\text{min}}}$.
The output voltage produced by an input voltage of the specified value of $V_{IL\text{max}}$ would be the measured value of $V_{OH\text{min}}$.

The output voltage is produced by an input voltage of the specified value of $V_{IH\text{min}}$ would be the measured value of $V_{OL\text{max}}$.
The output voltage produced by an input voltage of the specified value of $V_{IL\text{max}}$ would be the measured value of $V_{OH\text{min}}$.

The output voltage is produced by an input voltage of the specified value of $V_{IH\text{min}}$ would be the measured value of $V_{OL\text{max}}$.

Terry Sturtevant
Electronics Logic Gates: Measuring Voltage Limits