Electronics
Logic Gate Characteristics: Timing

Terry Sturtevant

Wilfrid Laurier University

November 16, 2016
Ideal logic gates

In PC/CP220, logic gates are treated as “ideal” devices. As well, only one or perhaps two logic families were discussed. Now the real (i.e. non-ideal) operating characteristics of different logic families will be studied.

The operation of an ideal logic gate can be summarized by the following rules:
Ideal logic gates

- In PC/CP220, logic gates are treated as “ideal” devices.
Ideal logic gates

- In PC/CP220, logic gates are treated as “ideal” devices. As well, only one or perhaps two logic families were discussed.
Ideal logic gates

- In PC/CP220, logic gates are treated as “ideal” devices. As well, only one or perhaps two logic families were discussed.
- Now the real (i.e. non-ideal) operating characteristics of different logic families will be studied.
Ideal logic gates

- In PC/CP220, logic gates are treated as “ideal” devices. As well, only one or perhaps two logic families were discussed.
- Now the real (i.e. non-ideal) operating characteristics of different logic families will be studied.
- The operation of an *ideal* logic gate can be summarized by the following rules:
Input and output voltages will be at either the *high* or the *low* value specified for that family; (eg. 5 and 0 volts, respectively for TTL)
• Input and output voltages will be at either the *high* or the *low* value specified for that family; (eg. 5 and 0 volts, respectively for TTL)

• Inputs will draw no current from whatever drives them, and outputs can supply as much current as necessary for whatever follows.
Input and output voltages will be at either the high or the low value specified for that family; (eg. 5 and 0 volts, respectively for TTL)

Inputs will draw no current from whatever drives them, and outputs can supply as much current as necessary for whatever follows.

Any change of an input will immediately be reflected on the output.
Real logic gates

In practice, these rules do not hold. A real logic gate operates under the following restrictions:

Terry Sturtevant
Real logic gates

In practice, these rules do not hold.
Real logic gates

In practice, these rules do not hold.

A *real* logic gate operates under the following restrictions:
Input voltages will not always be at ideal values.
• Input voltages will not always be at ideal values.
 A *range* of input values must be considered *high*.
Input voltages will not always be at ideal values. A range of input values must be considered \textit{high}

another range of input values must be considered \textit{low}. Similarly output voltages will not always be at ideal values. A range of output voltages should be considered \textit{high}

another range of output voltages should be considered \textit{low}. Changes made at the inputs will take a finite amount of time to be reflected on the outputs. Inputs must draw a small but finite amount of current from whatever is driving them in order that they will be recognized. Outputs have a limited current capacity for maintaining the output voltage at the desired level.
Input voltages will not always be at ideal values. A range of input values must be considered high, and another range of input values must be considered low.

Similarly, output voltages will not always be at ideal values.
Input voltages will not always be at ideal values
a *range* of input values must be considered *high*
another range of input values must be considered *low*.
Similarly output voltages will not always be at ideal values
a *range* of output voltages should be considered as *high*
● Input voltages will not always be at ideal values
 a range of input values must be considered high
 another range of input values must be considered low.

● Similarly output voltages will not always be at ideal values
 a range of output voltages should be considered as high
 another range of output voltages should be considered low.
- Input voltages will not always be at ideal values; a *range* of input values must be considered *high*; another range of input values must be considered *low*.

- Similarly, output voltages will not always be at ideal values; a *range* of output voltages should be considered as *high*; another *range* of output voltages should be considered *low*.

- Changes made at the inputs will take a finite amount of time to be reflected on the outputs.
Input voltages will not always be at ideal values
a range of input values must be considered high
another range of input values must be considered low.
Similarly output voltages will not always be at ideal values
a range of output voltages should be considered as high
another range of output voltages should be considered low.
Changes made at the inputs will take a finite amount of time
to be reflected on the outputs.
Inputs must draw a small but finite amount of current from
whatever is driving them in order that they will be recognized.
- Input voltages will not always be at ideal values; a range of input values must be considered high; another range of input values must be considered low.
- Similarly, output voltages will not always be at ideal values; a range of output voltages should be considered high; another range of output voltages should be considered low.
- Changes made at the inputs will take a finite amount of time to be reflected on the outputs.
- Inputs must draw a small but finite amount of current from whatever is driving them in order that they will be recognized.
- Outputs have a limited current capacity for maintaining the output voltage at the desired level.
The actual limits on voltage, current, timing, etc. will be given in manufacturer’s data sheets. Different manufacturers arrange their data sheets differently, and use different names.

Terry Sturtevant
Reading Data sheets

The actual limits on voltage, current, timing, etc. will be given in manufacturer’s data sheets.
The actual limits on voltage, current, timing, etc. will be given in manufacturer’s data sheets. Different manufacturers arrange their data sheets differently, and use different names.
Logic families

The real limitations on voltages, timing, and currents depend on the logic family involved. Note that usually comparing “real” to “ideal” values involves seeing how close one number, (the “real” value) is to another (the “ideal” value). With digital logic chips, however, rather than having a single “ideal” value for a parameter, the manufacturers give bounds for it instead. This is because these specifications are not values that should be matched, but rather they are values that should be considered as limits that one should achieve even in the “worst case” during real operation.
Logic families

- The real limitations on *voltages*, *timing*, and *currents* depend on the *logic family* involved.
Logic families

- The real limitations on *voltages*, *timing*, and *currents* depend on the *logic family* involved.

 Note that usually comparing “real” to “ideal” values involves seeing how close one number, (the “real” value) is to another (the “ideal” value).
Logic families

- The real limitations on voltages, timing, and currents depend on the logic family involved.

 Note that usually comparing “real” to “ideal” values involves seeing how close one number, (the “real” value) is to another (the “ideal” value).

- With digital logic chips, however, rather than having a single “ideal” value for a parameter, the manufacturers give bounds for it instead.
Logic families

- The real limitations on voltages, timing, and currents depend on the logic family involved.

 Note that usually comparing “real” to “ideal” values involves seeing how close one number, (the “real” value) is to another (the “ideal” value).

- With digital logic chips, however, rather than having a single “ideal” value for a parameter, the manufacturers give bounds for it instead.

 This is because these specifications are not values that should be matched, but rather they are values that should be considered as limits that one should achieve even in the “worst case” during real operation.
For instance, if a family has a nominal input “high” voltage of 5 volts, then any voltage above some voltage will be considered “high”.
For instance, if a family has a nominal input “high” voltage of 5 volts, then any voltage above some voltage will be considered “high”.

If an actual gate accepts a slightly lower voltage as a high, then that is not surprising and in fact is desirable.
Note that for some parameters the specifications will give an *upper* bound while for some they will give a *lower* bound.
Note that for some parameters the specifications will give an *upper* bound while for some they will give a *lower* bound. Which one is given will make sense if you understand what each parameter means.
Here’s a very simple circuit; a single inverter.
This is what you *expect* the output to look like...
This is what the output *actually* looks like.
Note the output is shifted right due to the propagation delay of the gate.
Zoomed in, the delay is around 10 nS.
Here the output is going from LOW to HIGH.
Here the output is going from HIGH to LOW.
In general, the two delays needn’t be the same.
Timing Limits

Ideally changes to the inputs of a gate would be reflected at the output immediately, but in reality there is a slight delay. In general, the delay may be different depending on whether the gate's output is going from low to high or from high to low. Furthermore, the transitions themselves are not instantaneous, so they are defined as being at the 50% point of the voltage transitions. Thus there are two quantities of interest:
Timing Limits

Ideally changes to the inputs of a gate would be reflected at the output immediately, but in reality there is a slight delay.
Timing Limits

Ideally changes to the inputs of a gate would be reflected at the output immediately, but in reality there is a slight delay. In general, the delay may be different depending on whether the gate’s output is going from low to high or from high to low.
Timing Limits

Ideally changes to the inputs of a gate would be reflected at the output immediately, but in reality there is a slight delay. In general, the delay may be different depending on whether the gate’s output is going from low to high or from high to low. Furthermore, the transitions themselves are not instantaneous, so they are defined as being at the 50% point of the voltage transitions.
Timing Limits

Ideally changes to the inputs of a gate would be reflected at the output immediately, but in reality there is a slight delay. In general, the delay may be different depending on whether the gate’s output is going from low to high or from high to low. Furthermore, the transitions themselves are not instantaneous, so they are defined as being at the 50% point of the voltage transitions. Thus there are two quantities of interest:
t_{PLH}
- \(t_{\text{PLH}} \)

the time interval between the change of an input and the resulting change in output, when the output must change from low to high.
- t_{PLH}
 the time interval between the change of an input and the resulting change in output, when the output must change from low to high.

- t_{PHL}
- t_{PLH}
 the time interval between the change of an input and the resulting change in output, when the output must change from low to high.

- t_{PHL}
 the time interval between the change of an input and the resulting change in output, when the output must change from high to low.
- t_{PLH}
 the time interval between the change of an input and the resulting change in output, when the output must change from low to high.

- t_{PHL}
 the time interval between the change of an input and the resulting change in output, when the output must change from high to low.
- t_{PLH}
 the time interval between the change of an input and the resulting change in output, when the *output* must change from low to high.

- t_{PHL}
 the time interval between the change of an input and the resulting change in output, when the *output* must change from high to low.

Note that in both cases above, the direction of the *input* transition is immaterial.
Measuring timing limits
Measuring timing limits

In order to measure timing limits, you can wire up the circuit as in the following figure and use the oscilloscope to measure V_{in} and V_{out}.
If necessary use a **Schmitt Trigger** on the clock to provide good square wave pulses.
If necessary use a **Schmitt Trigger** on the clock to provide good square wave pulses.

(A Schmitt Trigger is a logic gate which uses hysteresis to sharpen the edges of smeared-out pulses and to remove noise.)
If necessary use a **Schmitt Trigger** on the clock to provide good square wave pulses.

(A Schmitt Trigger is a logic gate which uses hysteresis to sharpen the edges of smeared-out pulses and to remove noise.)

Use a chain of gates \(n = 8 \) as shown to determine the propagation delay \(t_p \) of a given family.
If necessary use a **Schmitt Trigger** on the clock to provide good square wave pulses.

(A Schmitt Trigger is a logic gate which uses hysteresis to sharpen the edges of smeared-out pulses and to remove noise.)

Use a chain of gates \((n = 8)\) as shown to determine the propagation delay \(t_p\) of a given family.

Why can we not measure both \(t_{PHL}\) and \(t_{PLH}\) from the circuit shown?
In order to obtain a good measurement of the delay time, a frequency of operation should be chosen sufficiently high so that the total delay in the chain \(nt_p \) is comparable to the period of the input clock.
In order to obtain a good measurement of the delay time, a frequency of operation should be chosen sufficiently high so that the total delay in the chain (nt_p) is comparable to the period of the input clock. The propagation delay of a CMOS gate is not only a function of the load capacitance but also the supply voltage V_{DD}.
<table>
<thead>
<tr>
<th>Delay Time (nS)</th>
<th>2V</th>
<th>3V</th>
<th>6V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>75</td>
<td>30</td>
<td>13</td>
</tr>
<tr>
<td>Delay Time (nS)</td>
<td>2V</td>
<td>3V</td>
<td>6V</td>
</tr>
<tr>
<td>----------------</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>75</td>
<td>30</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>

74HC00A (ON Semiconductor)