Electronics

Logic Gates: Measuring Current Limits

Terry Sturtevant

Wilfrid Laurier University

September 4, 2013
Current convention

By convention, current into a chip is positive, so current out of a chip is negative.
Current convention

By convention, current into a chip is positive, so current out of a chip is negative.
Gates have current limits as well as voltage limits. There are limits to the input and output currents of each individual gate. In addition, there is some current required by the chip itself, as long as power is applied.
Gates have current limits as well as voltage limits.
Gates have current limits as well as voltage limits. There are limits to the input and output currents of each individual gate.
Gates have current limits as well as voltage limits. There are limits to the input and output currents of each individual gate. In addition, there is some current required by the chip itself, as long as power is applied.
Floating inputs

What happens with floating inputs?
Floating inputs

What happens with floating inputs?

![Logic gate diagram with floating input](image)
Floating inputs

What happens with floating inputs?

If input floats HIGH, output will be LOW.
Floating inputs

What happens with floating inputs?

If input floats HIGH, output will be LOW.

If input floats LOW, output will be HIGH.
If the input floats HIGH, then current will need to be drawn to ground to make it LOW.
Input floating HIGH

\[V_i > V_{IL_{\text{max}}} \]

\[I_i \]

A large resistor won’t allow enough current to make the input LOW.
Input floating HIGH

\[V_i \lesssim V_{IL_{\text{max}}} \]

Some resistance will allow enough current to make the input \(V_{IL_{\text{max}}} \).
Input floating HIGH

\[V_i < V_{IL_{\text{max}}} \]

A low enough resistance will allow enough current to make the input below \(V_{IL_{\text{max}}} \); i.e. LOW.
Input floating HIGH

\[V_i = V_{IL_{\text{max}}} \]

\[I_i = \frac{V_{IL_{\text{max}}}}{R} \]

The current limit is when \(V_i = V_{IL_{\text{max}}} \).
If the input floats LOW, then current will need to be drawn from V_{cc} to make it HIGH.
Input floating LOW

\[V_i < V_{IH_{\text{min}}} \]

A large resistor won’t allow enough current to make the input HIGH.
Input floating LOW

\[V_i \gtrapprox V_{IH_{\text{min}}} \]

Some resistance will allow enough current to make the input \(V_{IH_{\text{min}}} \).
Input floating LOW

\[V_i > V_{IH_{\text{min}}} \]

A low enough resistance will allow enough current to make the input above \(V_{IH_{\text{min}}} \); i.e. HIGH.
Input floating LOW

The current limit is when $V_i = V_{IH_{\text{min}}}$.

$$I_i = \frac{V_{cc} - V_{IH_{\text{min}}}}{R}$$

$$V_i = V_{IH_{\text{min}}}$$
In order to measure the input requirements for a gate, you could wire up the first circuit of the previous figure.
In order to measure the input requirements for a gate, you could wire up the first circuit of the previous figure. An oscilloscope could be used to measure V_{in} and V_{out}.
In order to measure the input requirements for a gate, you could wire up the first circuit of the previous figure. An oscilloscope could be used to measure V_{in} and V_{out}. Since one end of R is tied to a known voltage, and the other end is connected to the oscilloscope, then the voltage across R is known, and thus the current through R can be calculated using Ohm’s Law.
With nothing connected to the inputs of a gate, so there is no current in, you may observe its output.
With nothing connected to the inputs of a gate, so there is no current in, you may observe its output.

If the inputs of a device “float” so that they appear to be in a particular state with nothing connected, then by definition you don’t need to supply *any* current to keep them in that state!
Actually it can be more complicated than that.
Actually it can be more complicated than that. Sometimes the inputs float to voltage which is in the indeterminate region, so that sometimes they will appear to be high and other times they will appear to be low.
Starting with the lowest current possible, in the first circuit above, if you monitor the value of V_{out} as current is increased, you can determine when the output voltage just reaches the specified value of $V_{OL_{max}}$ and thus determine $I_{IH_{min}}$.

Terry Sturtevant
Electronics Logic Gates: Measuring Current Limits
Keep in mind the earlier note about whether a limit is called a “maximum” or a “minimum”, it will be referred to here as a minimum.
If you wire up the second circuit above and starting with the lowest possible current, monitor the value of V_{out} as current is increased, you can observe when the output voltage just falls below the specified value of $V_{\text{OH}}^{\text{min}}$ and thus determine $I_{\text{IL}}^{\text{min}}$.
Fan–out

When one gate feeds into many gates, as in the figure below, the first gate must be able to source (or sink) enough current for all of the gates it feeds.

I_1

I_2

I_3

\ldots

I_n
Fan–out

When one gate feeds into many gates, as in the figure below, the first gate must be able to source (or sink) enough current for all of the gates it feeds.
Fan–out

When one gate feeds into many gates, as in the figure below, the first gate must be able to source (or sink) enough current for all of the gates it feeds.
The **fan-out** of a gate is the number of gates of that family which can be fed by a single gate.
The **fan-out** of a gate is *the number of gates of that family which can be fed by a single gate*.

Keep in mind that the fan-out will be limited by the *lower* of the number for sourcing and sinking, since both must be possible.
CMOS fan–out

For CMOS, adding more gates will change the speed limit of the circuit.
CMOS fan–out

For CMOS, adding more gates will change the speed limit of the circuit.
Output low
Output low

\[V_{cc} \]

Output should be LOW
Output low

Suppose we tie it HIGH

\[V_{cc} \]
Output low

A large resistor won’t allow enough current to keep the output from being a valid LOW.
Some resistance will allow enough current to make the output $V_{OL_{max}}$.

$$V_o \lesssim V_{OL_{max}}$$
Output low

\[V_{cc} \]

\[V_{cc} \]

\[V_o > V_{OL_{\text{max}}} \]

A low enough resistance will allow enough current to make the output above \(V_{OL_{\text{max}}} \); i.e. invalid as a LOW.
Output low

\[
I_o = I_{OL_{max}} = \frac{V_{cc} - V_{OL_{max}}}{R}
\]

\[
V_o = V_{OL_{max}}
\]

The current \textit{limit} is when \(V_o = V_{OL_{max}} \).
Output High
Output High

Output should be HIGH
Output High

Suppose we tie the output LOW
Output High

\[V_o > V_{OH_{\text{min}}} \]

A large resistor won’t allow enough current to keep the output from being a valid HIGH.
Output High

\[V_o \geq V_{OH_{\text{min}}} \]

Some resistance will allow enough current to make the output \(V_{OH_{\text{min}}} \).
Output High

A low enough resistance will allow enough current to make the output below $V_{OH_{min}}$; i.e. invalid as a HIGH.
Output High

The current limit is when $V_o = V_{OH_{\text{min}}}$.

$$V_o = V_{OH_{\text{min}}}$$

$$I_o = I_{OH_{\text{max}}}$$

$$= \frac{V_{OH_{\text{min}}}}{R}$$
In order to measure the output current limits of a device, you can wire up the first circuit above.
In order to measure the output current limits of a device, you can wire up the first circuit above.
The oscilloscope can be used to measure V_{in} and V_{out}.
In order to measure the output current limits of a device, you can wire up the first circuit above.

The oscilloscope can be used to measure V_{in} and V_{out}. Since one end of R is tied to a known voltage, and the other end is connected to the oscilloscope, then the voltage across R is known, and thus the current through R can be calculated using Ohm’s Law.
Using the value of the *output sinking current* $I_{OL_{\text{max}}}$ from the data sheets, you can determine the maximum value of current which keeps the output in the low state and thus $I_{OL_{\text{max}}}$.
If you set up the second circuit above, and obtain the value of the **output sourcing current** $I_{OH_{max}}$ from the data sheets, then you can determine the maximum value of current which keeps the output in the high state and thus $I_{OH_{max}}$ in a manner similar to the one previously described.