Electronics
H-Bridges and DC Motors

Terry Sturtevant
Wilfrid Laurier University

April 22, 2019
DC motor

Permanent Magnet DC Motor (PMDC)

PMDC (Permanent Magnet DC) uses permanent fixed magnets. An armature on the shaft has an electromagnet. A commutator on the shaft reverses the current direction every half rotation. Speed is controlled by current, and direction is controlled by polarity. This results in continuous motion.
DC motor

- PMDC (Permanent Magnet DC Motor)
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
 armature on shaft has electromagnet
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
 armature on shaft has electromagnet
 commutator on shaft reverses current direction every half rotation
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
 armature on shaft has electromagnet
 commutator on shaft reverses current direction every half rotation
- speed controlled by current
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
 armature on shaft has electromagnet
 commutator on shaft reverses current direction every half rotation
- speed controlled by current
- direction controlled by polarity
DC motor

- PMDC (Permanent Magnet DC)
- uses permanent fixed magnets
 armature on shaft has electromagnet
 commutator on shaft reverses current direction every half rotation
- speed controlled by current
- direction controlled by polarity
- continuous motion
Permanent magnet DC motor
H-Bridge

H-Bridge

Allows a DC motor to run in either direction with a single supply

uses four transistors

either BJTs or FETs can be used

only two transistors are "on" at a time
H-Bridge

- Allows a DC motor to run in either direction with a single supply
H-Bridge

- Allows a DC motor to run in either direction with a single supply
- uses four transistors
H-Bridge

- Allows a DC motor to run in either direction with a single supply
- uses four transistors
 either BJTs or FETs can be used
H-Bridge

- Allows a DC motor to run in either direction with a single supply
- uses four transistors
 - either BJTs or FETs can be used
- only two transistors are “on” at a time
Transistors

There are several types of transistor; each is a three terminal device. The most common types of transistors are BJTs and FETs. Transistors are often used in voltage dividers to act as variable resistors.
Transistors

- There are several types of transistor; each is a three terminal device.
Transistors

- There are several types of transistor; each is a three terminal device.
- The most common types of transistors are BJTs and FETs.
Transistors

- There are several types of transistor; each is a three terminal device.
- The most common types of transistors are BJTs and FETs.
- Transistors are often used in voltage dividers to act as variable resistors.
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
- source
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
- source
- gate
FET symbol
FET symbol

\[\text{drain} \]
FET symbol

\[
\begin{array}{c}
\text{drain} \\
\text{source}
\end{array}
\]
FET symbol

gate \quad \| \quad \text{drain}

source
FET operation

- FETS are *voltage* amplifiers; a small *gate voltage* controls a much larger *drain/source current*.
FET operation

- FETS are voltage amplifiers; a small gate voltage controls a much larger drain/source current.

Actually it’s the voltage between the gate and the source which matters.
D and E MOSFETs

There are two kinds of MOSFET:

- **Enhancement mode (E type)**: When \(V_{gs} \) is below \(V_{th} \), \(I_{D} = 0 \). As \(V_{gs} \) increases above \(V_{th} \), \(I_{D} \) increases.

- **Depletion mode (D type)**: To get \(I_{D} \) to zero, a negative \(V_{gs} \) off must be applied.

In an H-bridge, you want E-MOSFETS so no current flows with no applied gate-source voltage.
D and E MOSFETs

There are two kinds of MOSFET

- Enhancement mode (E type)
 - When V_{gs} is below V_{th}, $I_D = 0$
 - As V_{gs} increases above V_{th}, I_D increases.

- Depletion mode (D type)
 - To get I_D to zero, a negative V_{gs} off must be applied.

In an H-bridge, you want E-MOSFETS so no current flows with no applied gate-source voltage.
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)
D and E MOSFETs

There are two kinds of MOSFET:

- enhancement mode (E type)
 - When V_{gs} is below V_{th}, $I_D = 0$

- depletion mode (D type)
 - To get I_D to zero, a negative V_{gs} off must be applied.
D and E MOSFETs

There are two kinds of MOSFET
- **enhancement mode (E type)**
 - When V_{gs} is below V_{th}, $I_D = 0$
 - As V_{gs} increases above V_{th},
There are two kinds of MOSFET:

- **enhancement mode (E type)**

 When V_{gs} is below V_{th}, $I_D = 0$

 As V_{gs} increases above V_{th}, I_D increases.

- **depletion mode (D type)**

 To get I_D to zero, a negative V_{gs} off must be applied.
D and E MOSFETs

There are two kinds of MOSFET:

- enhancement mode (E type)
 When V_{gs} is below V_{th}, $I_D = 0$
 As V_{gs} increases above V_{th}, I_D increases.

- depletion mode (D type)

To get I_D to zero, a negative V_{gs} off must be applied.

In an H-bridge, you want E-MOSFETS so no current flows with no applied gate-source voltage.
D and E MOSFETs

There are two kinds of MOSFET:

- **enhancement mode (E type)**

 > When V_{gs} is below V_{th}, $I_D = 0$

 > As V_{gs} increases above V_{th}, I_D increases.

- **depletion mode (D type)**

 > To get I_D to zero, a *negative* $V_{gs_{off}}$ must be applied.
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)

 When V_{gs} is below V_{th}, $I_D = 0$

 As V_{gs} increases above V_{th}, I_D increases.

- depletion mode (D type)

 To get I_D to zero, a negative $V_{gs_{off}}$ must be applied.

In an H-bridge, you want E-MOSFETS so no current flows with no applied gate-source voltage.
Bipolar Junction Transistors
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device.
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are
- collector
A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are

- collector
- emitter
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal current device. The terminals are

- collector
- emitter
- base
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are

- collector
- emitter
- base

The current from the collector to the emitter is controlled by the *current* into the base.
collector
BJT operation

BJTs are current amplifiers; a small base current controls a much larger collector/emitter current. You should always have a base resistor with a BJT!
BJT operation

- BJTS are *current* amplifiers;
BJT operation

- BJTs are *current* amplifiers; a small *base* current controls a much larger *collector/emitter* current.
BJT operation

- BJTs are *current* amplifiers; a small *base* current controls a much larger *collector/emitter* current.
- *You should always have a base resistor with a BJT!*
H bridge (shown with BJTs)
H bridge (shown with BJTs)

Current flows from left to right.
H bridge (shown with BJTs)

Current flows from right to left.
EMF considerations
EMF considerations

- inductive loads require a few special considerations
EMF considerations

- inductive loads require a few special considerations
- a motor is an inductive load
Induced EMF

Quickly changing voltage across inductor produces induced EMF. Induced voltage tries to counteract change in current and can produce big voltage spikes.

A diode across a coil will limit voltages to ≈ 0.7 V. A zener diode can limit voltages the other way to about the zener voltage.
Induced EMF

- Quickly changing voltage across inductor produces *induced EMF*
Induced EMF

Quickly changing voltage across inductor produces induced EMF
induced voltage tries to counteract change in current
Induced EMF

- Quickly changing voltage across inductor produces *induced EMF*
 - induced voltage tries to counteract change in current
 - can produce big voltage spikes
Induced EMF

- Quickly changing voltage across inductor produces *induced EMF*
- Induced voltage tries to counteract change in current
- Can produce big voltage spikes
- A diode across a coil will limit voltages to $\approx 0.7\, V$.
Induced EMF

- Quickly changing voltage across inductor produces \textit{induced EMF}
- Induced voltage tries to counteract change in current
- Can produce big voltage spikes
- A diode across a coil will limit voltages to \(\approx 0.7 \text{V} \).
- A zener diode can limit voltages the other way to about the zener voltage.
No diode to reduce induced EMF

Initially $I = 0$.
No diode to reduce induced EMF

Induced voltage tries to maintain $I = 0$.
No diode to reduce induced EMF

Eventually current is established determined by resistance in circuit.
No diode to reduce induced EMF

Induced voltage tries to maintain I at the previous value.
No diode to reduce induced EMF

Eventually current is reduced to $I = 0$.
Diode to reduce induced EMF

Initially $I = 0$.

$I = \bar{0}$
Diode to reduce induced EMF

Induced voltage tries to maintain $I = 0$, *but cannot exceed* V_Z.
Diode to reduce induced EMF

Eventually current is established determined by resistance in circuit.
Diode to reduce induced EMF

Induced voltage tries to maintain I but cannot exceed $\approx 0.7\,V$.
Diode to reduce induced EMF

Eventually current is reduced to $I = 0$.
H bridge with diodes included

![H-bridge circuit diagram]

1. V+
2. GND
3. Motor
4. 1, 2, 3, 4
Diodes across the transistors

Putting a diode across each transistor keeps the voltage from spiking at the terminals. This includes the base or gate. This will prevent the spike from getting to whatever is controlling it.
Diodes across the transistors

- Putting a diode across each transistor keeps the voltage from spiking at the terminals.
Diodes across the transistors

- Putting a diode across each transistor keeps the voltage from spiking at the terminals.
- This includes the base or gate.
Diodes across the transistors

- Putting a diode across each transistor keeps the voltage from spiking at the terminals.
- This includes the base or gate.
- This will prevent spike getting to *whatever is controlling it*.
L9110 H-bridge
L9110 H-bridge

- There are several H-bridge chips available.
L9110 H-bridge

- There are several H-bridge chips available.
- The L9110 is one example.
L9110 H-bridge

- There are several H-bridge chips available.
- The L9110 is one example.
- There are boards with two allowing independent control of two motors.
All the two motors have in common are the supply voltages.
If the 1A input is HIGH and the 1B input is LOW, the motor will run in one direction.
If the 1A input is LOW and the 1B input is HIGH, the motor will run in the other direction.
Controlling Speed

Controlling the base current or gate voltage may be difficult. However, pulse-width-modulation allows you to control the average power. This is the easy way to control speed. As long as the frequency is high enough, mechanical inertia will make the motion smooth.
Controlling Speed

Controlling the base current or gate voltage may be difficult.
Controlling Speed

- Controlling the base current or gate voltage may be difficult.
- However, pulse-width-modulation allows you to control the average power.
Controlling Speed

- Controlling the base current or gate voltage may be difficult.
- However, pulse-width-modulation allows you to control the average power.
- This is the easy way to control speed.
Controlling Speed

- Controlling the base current or gate voltage may be difficult.
- However, pulse-width-modulation allows you to control the average power.
- This is the easy way to control speed.

As long as the frequency is high enough, mechanical inertia will make the motion smooth.
Pulse width modulation to limit current

PWM can be used on one input.
Pulse width modulation to limit current

Motor A

or the other.
Pulse width modulation to limit current

Alternatively, you can use PWM on one input.
Pulse width modulation to limit current

and control direction with the other.
Pulse width modulation to limit current

In this case *decreasing* the duty cycle will *increase* power in one direction.