Electronics
Uses of Differential Amplifier Circuits

Terry Sturtevant

Wilfrid Laurier University

February 8, 2019
Differential amplifier
Differential amplifier circuit

Uses of Differential Amplifiers
Differential Signals
Signals which never reach zero
Signals which vary in the wrong direction
Scaling fixed voltages

Differential amplifier
Uses of Differential Amplifier Circuits

Differential amplifier circuit
Uses of Differential Amplifiers
Differential Signals
Signals which never reach zero
Signals which vary in the wrong direction
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3} \right) - V_2 \frac{R_f}{R_3} \]
Differential amplifier circuit
Uses of Differential Amplifiers
Differential Signals
Signals which never reach zero
Signals which vary in the wrong direction
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)
Uses of Differential Amplifier Circuits

Differential amplifier circuit
Uses of Differential Amplifiers
Differential Signals
Signals which never reach zero
Signals which vary in the wrong direction
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[\therefore V_{out} = \frac{R_f}{R_1} (V_1 - V_2) \]
Uses of Differential Amplifier Circuits

Differential amplifier circuit
Uses of Differential Amplifiers
Differential Signals
Signals which never reach zero
Signals which vary in the wrong direction
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[\therefore V_{out} = \frac{R_f}{R_1} (V_1 - V_2) \]

If all resistors are equal, \(V_{out} = V_1 - V_2 \)
Uses of Differential Amplifiers

1. Differential signals
 - Example: Wheatstone bridge

2. Signals which never reach zero
 - Example: voltage divider

3. Signals which vary in the wrong direction
 - Similar to “inverting” a signal in a single supply configuration
Uses of Differential Amplifiers

1. differential signals
Uses of Differential Amplifiers

1. Differential signals
 e.g. Wheatstone bridge
Uses of Differential Amplifiers

1. differential signals
 e.g. Wheatstone bridge

2. signals which never reach zero
Uses of Differential Amplifiers

1. Differential signals
 e.g. Wheatstone bridge

2. Signals which never reach zero
 e.g. Voltage divider
Uses of Differential Amplifiers

1. differential signals
 e.g. Wheatstone bridge

2. signals which never reach zero
 e.g. voltage divider

3. signals which vary in the “wrong” direction
Uses of Differential Amplifiers

1. differential signals
 e.g. Wheatstone bridge

2. signals which never reach zero
 e.g. voltage divider

3. signals which vary in the “wrong” direction
 similar to “inverting” a signal in a single supply configuration
Differential Signals

Some circuits produce pairs of outputs, e.g., Wheatstone bridge. The difference between the outputs is the quantity of interest. A differential amplifier allows you to subtract one signal from another signal.
Differential Signals

- Some circuits produce *pairs* of outputs
Differential Signals

- Some circuits produce *pairs* of outputs
 e.g. Wheatstone bridge
Differential Signals

- Some circuits produce *pairs* of outputs
e.g. Wheatstone bridge
- The *difference* between the outputs is the quantity of interest
Differential Signals

- Some circuits produce *pairs* of outputs
e.g. Wheatstone bridge
- The *difference* between the outputs is the quantity of interest
- A differential amplifier allows you to subtract *one signal from another signal*
Wheatstone bridge with differential amplifier
Wheatstone bridge with differential amplifier

single-ended output
Signals which never reach zero
Signals which never reach zero

- Some circuits produce signals which never reach zero
Signals which never reach zero

- Some circuits produce signals which never reach zero

e.g. voltage divider
Signals which never reach zero

- Some circuits produce signals which never reach zero
e.g. voltage divider
- It is often more useful if the minimum output is zero
Signals which never reach zero

- Some circuits produce signals which never reach zero
 e.g. voltage divider
- It is often more useful if the minimum output is zero
- A differential amplifier allows you to subtract a fixed voltage from the signal
Uses of Differential Amplifier Circuits

Voltage divider with differential amplifier
Voltage divider with differential amplifier

voltage to be subtracted
Signals which vary in the “wrong” direction
Signals which vary in the “wrong” direction

- Some circuits produce signals which vary opposite to the desired direction
Signals which vary in the “wrong” direction

- Some circuits produce signals which vary opposite to the desired direction
 - e.g. a light sensor which produces a higher voltage as the light gets dimmer
Signals which vary in the “wrong” direction

- Some circuits produce signals which vary opposite to the desired direction
 - e.g. a light sensor which produces a higher voltage as the light gets dimmer
- It is often more useful to have the variation in the other direction
Signals which vary in the “wrong” direction

- Some circuits produce signals which vary opposite to the desired direction
 e.g. a light sensor which produces a higher voltage as the light gets dimmer
- It is often more useful to have the variation in the other direction
- A differential amplifier allows you to subtract the signal from a fixed voltage
Signals which vary in the “wrong” direction

- Some circuits produce signals which vary opposite to the desired direction
 - e.g. a light sensor which produces a higher voltage as the light gets dimmer
- It is often more useful to have the variation in the other direction
- A differential amplifier allows you to subtract the signal from a fixed voltage

In a dual supply configuration, an inverting amplifier could be used, but this works with a single supply as well.
Inverting signal variation with differential amplifier
Inverting signal variation with differential amplifier

voltage to subtract signal \textit{from}
Scaling fixed voltages

\[V_{\text{out}} = V_1 \frac{R_2}{R_1} + \frac{R_2}{R_3} (1 + \frac{R_f}{R_3}) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[V_{\text{out}} = \frac{R_f}{R_1} (V_1 - V_2) \]

If all resistors are equal, \(V_{\text{out}} = V_1 - V_2 \)

If the fixed voltages are not what you want, you can adjust the resistor values instead.
Scaling fixed voltages

\[V_{out} = \frac{V_1R_2}{R_1+R_2} \left(1 + \frac{R_f}{R_3} \right) - V_2 \frac{R_f}{R_3} \]
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3} \right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[\therefore V_{out} = \frac{R_f}{R_1} (V_1 - V_2) \]
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[\therefore V_{out} = \frac{R_f}{R_1} (V_1 - V_2) \]

If all resistors are equal, \(V_{out} = V_1 - V_2 \)
Scaling fixed voltages

\[V_{out} = \frac{V_1 R_2}{R_1 + R_2} \left(1 + \frac{R_f}{R_3}\right) - V_2 \frac{R_f}{R_3} \]

Simplified if \(R_f = R_2 \) and \(R_1 = R_3 \)

\[\therefore V_{out} = \frac{R_f}{R_1} (V_1 - V_2) \]

If all resistors are equal, \(V_{out} = V_1 - V_2 \)

If the fixed voltages are not what you want, you can adjust the resistor values instead.