Electronics
Controlling Power to Output Transducers

Terry Sturtevant

Wilfrid Laurier University

November 10, 2016
Basic Rule of Control

Control usually involves three things:
1. a fixed power supply
2. a load to which we want to control the power
3. a control element to which we will send signals to control the power to the load.

These will be arranged in a voltage divider.

Terry Sturtevant
Electronics Controlling Power to Output Transducers
Basic Rule of Control

Control usually involves three things:
Basic Rule of Control

Control usually involves three things:

1. a fixed power supply
Basic Rule of Control

Control usually involves three things:

1. a fixed power supply
2. a **load** to which we want to control the power
Basic Rule of Control

Control usually involves three things:

1. a fixed power supply
2. a load to which we want to control the power
3. a control element to which we will send signals to control the power to the load.
Basic Rule of Control

Control usually involves three things:

1. a fixed power supply
2. a load to which we want to control the power
3. a control element to which we will send signals to control the power to the load.

These will be arranged in a voltage divider.
C.E. is the control element. Load could be a motor, solenoid, relay coil, etc.
“C.E.” is the control element.
“C.E.” is the control element.
“Load” could be a motor, solenoid, relay coil, etc.
Low power devices
Low power devices

These devices require low power.
Low power devices

These devices require *low power*. Low power is typically $\lesssim 1W$.
Low power devices

These devices require *low power*. Low power is typically $\lesssim 1\text{W}$.

- meter
Low power devices

These devices require *low power*. Low power is typically $\lesssim 1W$.

- meter
- oscilloscope
Low power devices

These devices require *low power*. Low power is typically $\lesssim 1\text{W}$.

- meter
- oscilloscope

These devices produce *information*.
High power devices

These devices require high power. High power is typically \(\gtrsim 1 \) W.

- Lights
- Solenoids

These devices produce action. An operational amplifier is a voltage device; it can't produce more than a few mW of power.
High power devices

These devices require *high power*.
High power devices

These devices require *high power*. High power is typically $\geq 1\, \text{W}$.
High power devices

These devices require *high power*. High power is typically $\geq 1W$.

- lights
High power devices

These devices require *high power*. High power is typically \(\gtrsim 1 \text{W} \).

- lights
- solenoids
High power devices

These devices require \textit{high power}. High power is typically $\gtrsim 1\text{W}$.
- lights
- solenoids

These devices produce \textit{action}.
High power devices

These devices require *high power*. High power is typically \(\geq 1\, \text{W} \).
- lights
- solenoids

These devices produce *action*. An operational amplifier is a *voltage* device; it can’t produce more than a few mW of power.
Types of control

- on/off like a switch
- proportional like a rheostat or potentiometer
Types of control

- on/off
Types of control

- on/off
 like a switch
Types of control

- on/off
 - like a switch
- proportional
Types of control

- on/off
 like a switch
- proportional
 like a rheostat or potentiometer
Control trade-offs

There are trade-offs involved in choosing a type of control. Efficiency on/off is 100% efficient, proportional is less efficient. Noise on/off produces more noise, proportional produces less noise. There is a trade-off between efficiency and noise.
Control trade-offs

There are trade-offs involved in choosing a type of control.
Control trade-offs

There are trade-offs involved in choosing a type of control.

- efficiency
Control trade-offs

There are trade-offs involved in choosing a type of control.

- efficiency

 - on/off is 100% efficient

 - proportional is less efficient

- noise

 - on/off produces more noise

 - proportional produces less noise

There is a trade-off between efficiency and noise.
Control trade-offs

There are trade-offs involved in choosing a type of control.

- **efficiency**
 - on/off is 100% efficient
 - proportional is less efficient
Control trade-offs

There are trade-offs involved in choosing a type of control.

- Efficiency
 - on/off is 100% efficient
 - proportional is less efficient

- Noise
Control trade-offs

There are trade-offs involved in choosing a type of control.

- **efficiency**
 - on/off is 100% efficient
 - proportional is less efficient

- **noise**
 - on/off produces more noise
Control trade-offs

There are trade-offs involved in choosing a type of control.

- **efficiency**
 - on/off is 100% efficient
 - proportional is less efficient

- **noise**
 - on/off produces more noise
 - proportional produces less noise
Control trade-offs

There are trade-offs involved in choosing a type of control.

- **efficiency**
 - on/off is 100% efficient
 - proportional is less efficient

- **noise**
 - on/off produces more noise
 - proportional produces less noise

There is a trade-off between efficiency and noise.
As previously noted, any device used for control is basically used in a voltage divider using
As previously noted, any device used for control is basically used in a voltage divider using

- the supply voltage,
As previously noted, any device used for control is basically used in a voltage divider using

- the supply voltage,
- the control device,
As previously noted, any device used for control is basically used in a voltage divider using

- the supply voltage,
- the control device,
- and the load.
As previously noted, any device used for control is basically used in a voltage divider using:

- the supply voltage,
- the control device,
- and the load.

The order of the control element and the load in the voltage divider has some effects on the circuit operation.
Relay

A relay is based on a solenoid, and has four types of pins:
- coil
- common
- NO; normally open (possibly)
- NC; normally closed (possibly)
Relay

A relay is based on a solenoid, and has four types of pins:
A relay is based on a solenoid, and has four types of pins:

- coil
A relay is based on a solenoid, and has four types of pins:

- coil
- common
A relay is based on a solenoid, and has four types of pins:

- coil
- common
- **NO**; normally open (possibly)
A relay is based on a solenoid, and has four types of pins:

- **coil**
- **common**
- **NO**: normally open (possibly)
- **NC**: normally closed (possibly)
Relay **OFF**

![Relay Circuit Diagram](image)

- **NC**: Common
- **NO**: Open
Relay ON

NC
common

NO
An internal spring returns the solenoid to its original position when power is removed from the coil.
Since a relay is inductive, all of the precautions for an inductive device must be taken.
Since a relay is inductive, all of the precautions for an inductive device must be taken.
The relay can be inserted on either side of the load in a voltage divider.
The relay can be inserted on either side of the load in a voltage divider.

\[V_{\text{in}} \quad V_{\text{supply}} \quad V_{\text{out}} \]
The relay can be inserted on either side of the load in a voltage divider.
Transistors

There are several types of transistor; each is a three terminal device. The most common types of transistors are BJTs and FETs. Transistors are often used in voltage dividers to act as variable resistors.
Transistors

- There are several types of transistor; each is a three terminal device.
Transistors

- There are several types of transistor; each is a three terminal device.
- The most common types of transistors are BJTs and FETs.
Transistors

- There are several types of transistor; each is a three terminal device.
- The most common types of transistors are BJT s and FETs.
- Transistors are often used in voltage dividers to act as variable resistors.
Metal Oxide Semiconductor Field Effect Transistors
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
- source
Metal Oxide Semiconductor Field Effect Transistors

A MOSFET (or Metal Oxide Semiconductor Field Effect Transistor) is a three terminal device.

- drain
- source
- gate
FET symbol
FET symbol

drain
FET symbol

\[\text{drain} \]
\[\text{source} \]
FET symbol

gate \[\rightarrow \] drain

source
FET operation

- FETS are *voltage* amplifiers; a small *gate voltage* controls a much larger *drain/source current*.
FET operation

- FETS are *voltage* amplifiers; a small *gate voltage* controls a much larger *drain/source current*.

Actually it’s the voltage between the gate and the source which matters.
D and E MOSFETs

There are two kinds of MOSFET:
- **Enhancement mode (E type)**
 - When V_{gs} is below V_{th}, $I_D = 0$
 - As V_{gs} increases above V_{th}, I_D increases.
- **Depletion mode (D type)**
 - To get I_D to zero, a negative V_{gs} off must be applied.

Actually, all MOSFETs operate in enhancement mode. It's just that some only operate in that mode. Which kind you want depends on whether or not you want some current to flow with no applied gate-source voltage.
D and E MOSFETs

There are two kinds of MOSFET
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)

 When \(V_{gs} \) is below \(V_{th} \), \(I_D = 0 \)

- depletion mode (D type)

 To get \(I_D \) to zero, a negative \(V_{gs} \) off must be applied.
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)
 When V_{gs} is below V_{th}, $I_D = 0$
 As V_{gs} increases above V_{th},
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)
 When V_{gs} is below V_{th}, $I_D = 0$
 As V_{gs} increases above V_{th}, I_D increases.
D and E MOSFETs

There are two kinds of MOSFET:

- enhancement mode (E type)

 When V_{gs} is below V_{th}, $I_D = 0$

 As V_{gs} increases above V_{th}, I_D increases.

- depletion mode (D type)
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)
 When V_{gs} is below V_{th}, $I_D = 0$
 As V_{gs} increases above V_{th}, I_D increases.

- depletion mode (D type)
 To get I_D to zero, a negative $V_{gs_{off}}$ must be applied.
D and E MOSFETs

There are two kinds of MOSFET

- enhancement mode (E type)

 When V_{gs} is below V_{th}, $I_D = 0$

 As V_{gs} increases above V_{th}, I_D increases.

- depletion mode (D type)

 To get I_D to zero, a negative $V_{gs_{off}}$ must be applied.

Actually, all MOSFETs operate in *enhancement* mode. It’s just that some *only* operate in that mode.
D and E MOSFETs

There are two kinds of MOSFET

● enhancement mode (E type)
 When V_{gs} is below V_{th}, $I_D = 0$
 As V_{gs} increases above V_{th}, I_D increases.

● depletion mode (D type)
 To get I_D to zero, a negative $V_{gs_{off}}$ must be applied.

Actually, all MOSFETs operate in enhancement mode. It’s just that some only operate in that mode. Which kind you want depends on whether or not you want some current to flow with no applied gate-source voltage.
Basic Rule of Control

- Types of output transducers
- Types of control
- Devices for control
- Other considerations

<table>
<thead>
<tr>
<th>Relay</th>
<th>Transistors</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOSFET</td>
<td>BJT</td>
</tr>
<tr>
<td>TRIAC</td>
<td></td>
</tr>
</tbody>
</table>

Devices for control

- Relay
- Transistors
- MOSFET
- BJT
- TRIAC

Other considerations

- D (depletion mode) MOSFET

![Diagram of D (depletion mode) MOSFET](image)

D (depletion mode) MOSFET
D (depletion mode) MOSFET output
E (enhancement mode) MOSFET
E (enhancement mode) MOSFET output
E (enhancement mode) MOSFET output zoomed in
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

$$V_{supply}$$

$$V_{gs}$$

$$V_{o}$$

$I \approx 0$ if $V_{gs} \lesssim V_{th}$

E (enhancement mode) FET
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_{supply} \]

\[V_{gs} \]

\[V_o = V_{DS} \]

E (enhancement mode) FET
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_{gs} = 0 \]

\[V_o \approx V_{supply} \text{ if } V_{gs} < V_{th} \]

E (enhancement mode) FET
E (enhancement mode) FET

\[V_o = V_{DS} < V_{supply} \text{ if } V_{gs} \gtrsim V_{th} \]
Basic Rule of Control

Types of output transducers

Types of control

Devices for control

Other considerations

Relay

Transistors

MOSFET

BJT

TRIAC

\[V_{o} = V_{DS} \rightarrow 0 \text{ if } V_{gs} >> V_{th} \]

E (enhancement mode) FET
FETs are *voltage* amplifiers; a small *gate-source* voltage controls a much larger *drain/source* current.
• FETS are *voltage* amplifiers; a small *gate-source* voltage controls a much larger *drain/source* current.

• *You do not use a gate resistor with an FET!*
- FETS are *voltage* amplifiers; a small *gate-source* voltage controls a much larger *drain/source* current.

- *You do not use a gate resistor with an FET!*

- All FETs work in *enhancement* mode; some also work in *depletion* mode.
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_{\text{supply}} \]

\[V_{gs} = 0 \]

gate

\[V_o = V_{DS} > 0 \text{ if } V_{gs} = 0 \]

D (depletion mode) FET
$I \approx 0 \text{ if } V_{gs} \lesssim V_{gs_{off}} < 0$

V_{gs} has to be negative to turn off.

D (depletion mode) FET
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_{o} = V_{DS} < V_{\text{supply}} \text{ if } V_{gs} \gtrsim 0 \]

D (depletion mode) FET
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_{supply} \]

\[V_{gs} \gg 0 \]

\[V_o = V_{DS} \rightarrow 0 \text{ if } V_{gs} \gg 0 \]

D (depletion mode) FET
The MOSFET, like the relay, can be placed in either position of a voltage divider.
The MOSFET, like the relay, can be placed in either position of a voltage divider. The effects are the same as for the relay.
The MOSFET, like the relay, can be placed in either position of a voltage divider. The effects are the same as for the relay.
The MOSFET, like the relay, can be placed in either position of a voltage divider. The effects are the same as for the relay.
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal current device. The terminals are collector, emitter, base. The current from the collector to the emitter is controlled by the current into the base.
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal current device.
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are...
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are

- collector
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal current device. The terminals are

- collector
- emitter
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are:

- collector
- emitter
- base
Bipolar Junction Transistors

A BJT (or Bipolar Junction Transistor) is a three terminal *current* device. The terminals are

- collector
- emitter
- base

The current from the collector to the emitter is controlled by the *current* into the base.
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

Terry Sturtevant
Electronics Controlling Power to Output Transducers
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

collector
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

collector
emitter
Basic Rule of Control
Types of output transducers
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

collector
emitter
BJT operation

BJTs are current amplifiers; a small base current controls a much larger collector/emitter current. You should always have a base resistor with a BJT!
BJT operation

- BJTs are *current* amplifiers;
BJT operation

- BJTs are *current* amplifiers; a small *base* current controls a much larger *collector/emitter* current.
BJT operation

- BJTs are *current* amplifiers; a small *base* current controls a much larger *collector/emitter* current.
- *You should always have a base resistor with a BJT!*
V_o \approx V_s \text{ if } V_i \lesssim 0.7

I_c \approx 0 \text{ if } V_i \lesssim 0.7
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_s \]

\[V_i \lesssim 0.7 \]

\[V_o \approx V_s \text{ if } V_i \lesssim 0.7 \]

\[I_c \approx 0 \text{ if } V_i \lesssim 0.7 \]
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

\[V_i > 0.7 \]

\[V_o = V_s - I_c R \text{ if } V_i > 0.7 \]

\[I_c \propto I_b \text{ if } V_i > 0.7 \]
Like the previous devices, either position in a voltage divider can be used.
Like the previous devices, either position in a voltage divider can be used.
Like the previous devices, either position in a voltage divider can be used.
Like the previous devices, either position in a voltage divider can be used.

![Diagram of a voltage divider with input V_{in}, output V_{out}, and supply V_{supply}]
TRIAC

A TRIAC is a three terminal ac voltage device. The terminals are main terminal 1, main terminal 2, and gate. A triac will begin to conduct when it receives a voltage pulse on the gate. It will continue to conduct until the current is zero.
TRIAC

A TRIAC is a three terminal *ac voltage* device.
A TRIAC is a three terminal *ac voltage* device. The terminals are
A TRIAC is a three terminal *ac voltage* device. The terminals are

- main terminal 1
A TRIAC is a three terminal *ac voltage* device. The terminals are
- main terminal 1
- main terminal 2
A TRIAC is a three terminal *ac voltage* device. The terminals are

- main terminal 1
- main terminal 2
- gate
A TRIAC is a three terminal *ac voltage* device. The terminals are
- main terminal 1
- main terminal 2
- gate

A triac will begin to conduct when it receives a voltage pulse on the *gate*.
A TRIAC is a three terminal *ac voltage* device. The terminals are
- main terminal 1
- main terminal 2
- gate

A triac will begin to conduct when it receives a voltage pulse on the *gate*. It will continue to conduct until the *current* is zero.
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

Electronics Controlling Power to Output Transducers
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

Terry Sturtevant
Electronics Controlling Power to Output Transducers
Basic Rule of Control

<table>
<thead>
<tr>
<th>Types of output transducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Devices for control</td>
</tr>
<tr>
<td>Other considerations</td>
</tr>
</tbody>
</table>

Types of control

- Relay
- Transistors
- MOSFET
- BJT
- TRIAC

Diagram:

![Circuit Diagram](image)

Electronics Controlling Power to Output Transducers
It can operate in two modes.
It can operate in two modes.

- burst
It can operate in two modes.

- burst
- delayed trigger
In burst mode, trigger pulses are only given at the beginning of half-cycles.
In *burst* mode, trigger pulses are only given at the beginning of half-cycles.
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

This is a typical circuit to control a triac in burst mode.

Terry Sturtevant
Electronics Controlling Power to Output Transducers
This is a typical circuit to control a triac in burst mode.
In delayed trigger mode, trigger pulses are delayed after the beginning of half-cycles to produce power for only a part of each half cycle.
In *delayed trigger* mode, trigger pulses are delayed after the beginning of half-cycles to produce power for only a part of each half cycle.
Basic Rule of Control
Types of output transducers
Types of control
Devices for control
Other considerations

Relay
Transistors
MOSFET
BJT
TRIAC

This is a typical circuit to control a triac in delayed trigger mode.

Terry Sturtevant
Electronics Controlling Power to Output Transducers
This is a typical circuit to control a triac in delayed trigger mode.
Using TTL gates for control
Using TTL gates for control

- “Extra” current from TTL
Using TTL gates for control

- “Extra” current from TTL
- sink instead of source
Using TTL gates for control

- “Extra” current from TTL
- sink instead of source
- 0.4mA vs. 8 mA (LS)
Current sourcing
Current sourcing

![Diagram of current sourcing](image-url)
Current sourcing

$I_{OH} \leq 0.4\text{mA}$
Current sinking
Current sinking

\[V_{CC} \]
Current sinking

\[V_{CC} \]

\[I_{OL} \leq 8.0\text{mA} \]
Using a TTL gate to sink instead of source allows 20x the current!