Electronics
Block Diagrams

Terry Sturtevant

Wilfrid Laurier University

February 13, 2019
Introduction

There are many different ways to describe a circuit or a system. One way to describe a circuit is with a schematic diagram. For a large or complex circuit, a schematic diagram may be difficult to understand. A block diagram allows a circuit or system to be described as a set of modules. By identifying the modules, and showing how they are connected, it provides a simple overview. Each module can then be described individually, and its function more easily understood.
Introduction

- There are many different ways to describe a circuit or a system.
Introduction

- There are many different ways to describe a circuit or a system.
- One way to describe a circuit is with a **schematic diagram**.
Introduction

- There are many different ways to describe a circuit or a system.
- One way to describe a circuit is with a **schematic diagram**. For a large or complex circuit, a schematic diagram may be difficult to understand.
Introduction

- There are many different ways to describe a circuit or a system.
- One way to describe a circuit is with a **schematic diagram**. For a large or complex circuit, a schematic diagram may be difficult to understand.
- A **block diagram** allows a circuit or system to be described as a set of **modules**.
Introduction

- There are many different ways to describe a circuit or a system.
- One way to describe a circuit is with a **schematic diagram**. For a large or complex circuit, a schematic diagram may be difficult to understand.
- A **block diagram** allows a circuit or system to be described as a set of **modules**.

 By identifying the modules, and showing how they are connected, it provides a simple overview.
Introduction

- There are many different ways to describe a circuit or a system.
- One way to describe a circuit is with a **schematic diagram**. For a large or complex circuit, a schematic diagram may be difficult to understand.
- A **block diagram** allows a circuit or system to be described as a set of **modules**. By identifying the modules, and showing how they are connected, it provides a simple overview.
- Each module can then be described individually, and its function more easily understood.
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor which measures the temperature of the environment
- A heater which changes the temperature of the environment
- A controller which uses information from the sensor to adjust the heater
Simple Example

A heating system, such as for a house, requires 3 parts:
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
- A heater
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
- A heater
 which changes the temperature of the environment
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
- A heater
 which changes the temperature of the environment
- A controller
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
- A heater
 which changes the temperature of the environment
- A controller
 which uses information from the sensor to adjust the heater.
Simple Example

A heating system, such as for a house, requires 3 parts:

- A temperature sensor
 which measures the temperature of the environment
- A heater
 which changes the temperature of the environment
- A controller
 which uses information from the sensor to adjust the heater.

A diagram is simple to make.
Block diagram

Heating System Block Diagram
Can you tell which part is which?
Now can you tell which part is which?
Now can you tell which part is which?
By indicating signal directions, it makes the flow of control obvious.
By indicating signal *directions*, it makes the flow of control obvious.

The diagram can be easily adapted to more complex systems.
Slightly more complex example

Heating and Cooling System Block Diagram
The same block diagram could be used for a similar system in a different context.
The same block diagram could be used for a similar system in a different context.

For instance, this system could be used for controlling the water temperature in a shower.
The same block diagram could be used for a similar system in a different context.

For instance, this system could be used for controlling the water temperature in a shower.

To do this, replace heater and A/C with valves on the hot and cold lines.
Adapted example: shower control

Is there anything that needs to change?
Adapted example: shower control

Indicating the type of signal conveys important information.
The original block diagram could also be used for a light control system.
Light control system

Incandescent Light Control
This will work for *incandescent* lights
This will work for *incandescent* lights

What need to change for LED lights?
LED light control system

LED Light Control; not quite done
LED light control system

Complete LED Light Control
So the previous block diagram describes a system with:

- A temperature sensor which produces an analog signal to indicate the light level.
- An LED light which changes the light level.
- A controller which takes in the analog signal from the sensor and produces a pulse-width modulated signal to the LED light.

All of this can be determined without any other documentation.
So the previous block diagram describes a system with:

- A temperature sensor
So the previous block diagram describes a system with:

- A temperature *sensor*
 which produces an *analog signal* to indicate the light level
So the previous block diagram describes a system with:

- A temperature sensor, which produces an analog signal to indicate the light level
- An LED light
So the previous block diagram describes a system with:

- A temperature \textit{sensor} which produces an \textit{analog signal} to indicate the light level
- An \textit{LED light} which \textit{changes} the light level
So the previous block diagram describes a system with:

- A temperature *sensor*
 which produces an *analog signal* to indicate the light level
- An *LED light*
 which *changes* the light level
- A *controller*
So the previous block diagram describes a system with:

- A temperature *sensor* which produces an *analog signal* to indicate the light level

- An *LED light* which *changes* the light level

- A *controller* which takes in the *analog* signal from the sensor and produces a *pulse-width modulated* signal to the LED light.
So the previous block diagram describes a system with:

- A temperature *sensor*
 which produces an *analog signal* to indicate the light level
- An *LED light*
 which *changes* the light level
- A *controller*
 which takes in the *analog* signal from the sensor and produces a *pulse-width modulated* signal to the LED light.

All of this can be determined without any other documentation.
Multiple signals and interfaces
Multiple signals and interfaces

There may be more than one signal between two devices
Multiple signals and interfaces

There may be more than one signal between two devices

- There could be several *independent* signals *of the same type*
Multiple signals and interfaces

There may be more than one signal between two devices

- There could be several *independent* signals *of the same type*
- There could be an *interface* made up of several *dependent* signals with a *communication protocol*
Multiple signals and interfaces

There may be more than one signal between two devices

- There could be several *independent* signals *of the same type*
- There could be an *interface* made up of several *dependent* signals with a *communication protocol*

(Interfaces usually include signals in both directions)
Multiple signals and interfaces

There may be more than one signal between two devices

- There could be several *independent* signals *of the same type*
- There could be an *interface* made up of several *dependent* signals with a *communication protocol*

(Interfaces usually include signals in both directions)

It is easy and useful to have symbols for these as well.
What’s the difference between multiple signals and an interface?
What’s the difference between multiple signals and an interface?

- If there is a *library* to simplify the communication then it is an interface.
What’s the difference between multiple signals and an interface?

- If there is a *library* to simplify the communication then it is an interface.
- If there is no *library* then you have to handle all of the signals yourself.
What’s the difference between multiple signals and an interface?

- If there is a *library* to simplify the communication then it is an interface.
- If there is no *library* then you have to handle all of the signals yourself.

This process of handling all of the signals yourself is often called **bit-bashing** or **bit-banging**.
Multiple signals

Multiple digital signals
Multiple signals

Multiple analog signals
Multiple signals

Multiple pulse-width modulated signals
Multiple signals

UART interface
What can you tell about the Raspberry Pi?