Electronics
Negative Feedback in Operational Amplifiers

Terry Sturtevant

Wilfrid Laurier University

July 29, 2013
The equation for the output of an op amp is always true as long as the output is not saturated.
The equation for the output of an op amp is always true as long as the output is not saturated
The equation for the output of an op amp is always true *as long as the output is not saturated*

\[V_o = A(V_+ - V_-) \]
For negative feedback, make the voltage at V_- be some portion of V_o.

This ratio of V_- to V_o is called the feedback factor, β.

$\beta V_o + V_- = V_o$
For negative feedback, make the voltage at V_- be some portion of V_o.
This ratio of V_- to V_o is called the feedback factor, β.
For negative feedback, make the voltage at V_- be some portion of V_o.

This ratio of V_- to V_o is called the feedback factor, β.

\[\beta \frac{V_-}{V_o} \]
For instance, with just a wire from $V_- \text{ to } V_o$, the feedback factor is 1.
For instance, with just a wire from V_- to V_o, the feedback factor is 1.

This is the case for a \textit{voltage follower}.
For instance, with just a wire from V_- to V_o, the feedback factor is 1.

This is the case for a voltage follower.
Op amp output with negative feedback
Example: non-inverting amplifier

For feedback
For feedback

\[V_- = \beta V_o \]
For feedback

\[V_- = \beta V_o \]

where
For feedback

\[V_- = \beta V_o \]

where

\[\beta \in [0, 1] \]
For feedback

\[V_- = \beta V_o \]

where

\[\beta \in [0, 1] \]

So the op amp equation
For feedback

\[V_- = \beta V_o \]

where

\[\beta \in [0, 1] \]

So the op amp equation

\[V_o = A(V_+ - V_-) \]

becomes
For feedback

\[V_- = \beta V_o \]

where

\[\beta \in [0, 1] \]

So the op amp equation

\[V_o = A (V_+ - V_-) \]

becomes

\[V_o = A (V_+ - \beta V_o) \]
For feedback

\[V_- = \beta V_o \]

where

\[\beta \in [0, 1] \]

So the op amp equation

\[V_o = A(V_+ - V_-) \]

becomes

\[V_o = A(V_+ - \beta V_o) \]

\[V_o = AV^+ - \beta AV_o \]
Op amp output with negative feedback
Example: non-inverting amplifier

\[V_o + \beta AV_o = AV_+ \]
Op amp output with negative feedback
Example: non-inverting amplifier

\[V_o + \beta AV_o = AV_+ \]

\[V_o (1 + \beta A) = AV_+ \]
Op amp output with negative feedback
Example: non-inverting amplifier

\[V_o + \beta AV_o = AV_+ \]

\[V_o (1 + \beta A) = AV_+ \]
Op amp output with negative feedback

Example: non-inverting amplifier

\[V_o + \beta AV_o = AV_+ \]

\[V_o (1 + \beta A) = AV_+ \]

\[V_o = V_+ \left(\frac{A}{1 + \beta A} \right) \]
\[V_o + \beta AV_o = AV_+ \]

\[V_o (1 + \beta A) = AV_+ \]

\[V_o = V_+ \left(\frac{A}{1+\beta A} \right) \]

\[V_o = V_+ \left(\frac{1}{\frac{1}{A} + \beta} \right) \]
If the gain, A, is much greater than 1, then
If the gain, A, is much greater than 1, then

$$A \gg \beta$$
If the gain, A, is much greater than 1, then

$$A \gg \beta$$

and so

$$\frac{1}{A} \ll \beta$$
If the gain, A, is much greater than 1, then

$$A \gg \beta$$

and so

$$\frac{1}{A} \ll \beta$$

$$V_o = V_+ \left(\frac{1}{\frac{1}{A} + \beta} \right)$$
If the gain, A, is much greater than 1, then

$$A \gg \beta$$

and so

$$\frac{1}{A} \ll \beta$$

$$V_o = V_+ \left(\frac{1}{\frac{1}{A} + \beta} \right)$$

thus

$$V_o \approx V_+ \left(\frac{1}{\beta} \right)$$
If the gain, A, is much greater than 1, then

$$A \gg \beta$$

and so

$$\frac{1}{A} \ll \beta$$

thus

$$V_o = V_+ \left(\frac{1}{\frac{1}{A} + \beta} \right)$$

so V_o only depends on β.
Op amp output with negative feedback
Example: non-inverting amplifier

$V_o \approx V_+ \left(\frac{1}{\beta} \right)$
Op amp output

Op amp output with negative feedback
Example: non-inverting amplifier

\[V_o \approx V_+ \left(\frac{1}{\beta} \right) \]

So for a voltage follower, where \(\beta = 1 \),
Op amp output

Op amp output with negative feedback

Example: non-inverting amplifier

\[V_o \approx V_+ \left(\frac{1}{\beta} \right) \]

So for a voltage follower, where \(\beta = 1 \),

\[V_o \approx V_+ \]
\[V_o \approx V_+ \left(\frac{1}{\beta} \right) \]

So for a voltage follower, where \(\beta = 1 \),

\[V_o \approx V_+ \]

as expected.
Non-inverting amplifier
Non-inverting amplifier
This can be redrawn
This can be redrawn

\[V_+ \quad V_- \quad V_o \quad R_f \quad R_i \]
This can be redrawn
This can be redrawn

\[\begin{align*}
V_- & \quad V_+ \\
R_f & \quad R_i \\
V_o
\end{align*} \]
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o.
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o

By definition, this is the feedback factor, β.

R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o

By definition, this is the feedback factor, β.

Thus
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o.

By definition, this is the feedback factor, β.

Thus

$$\beta = \frac{R_i}{R_f + R_i}$$
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o.
By definition, this is the feedback factor, β.
Thus

$$\beta = \frac{R_i}{R_f + R_i}$$
so
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o

By definition, this is the feedback factor, β.

Thus

$$\beta = \frac{R_i}{R_f + R_i}$$

so

$$gain = \frac{1}{\beta} = \frac{R_f + R_i}{R_i}$$
R_f and R_i form a voltage divider, so the voltage at V_- is a fraction of V_o

By definition, this is the feedback factor, β.

Thus

$$\beta = \frac{R_i}{R_f + R_i}$$

so

$$gain = \frac{1}{\beta} = \frac{R_f + R_i}{R_i}$$

as expected
This can be redrawn
This can be redrawn

\[V_o = V_A \]

\[V_B = 1 + \frac{R_f}{R_i} \]

\[V_i \]
This can be redrawn

\[\frac{V_o}{V_i} = \frac{V_A}{V_B} = 1 + \frac{R_f}{R_i} \]
If R_i is not grounded, then it looks like this.
If R_i is not grounded, then it looks like this.

![Diagram of op amp with negative feedback](image)

\[V_B = V_i - V_C \]
\[V_A = V_B - V_C \]
\[V_o = V_A - V_C \]

\[V_o = V_i \left(1 + \frac{R_f}{R_i} \right) \]
If R_i is not grounded, then it looks like this.

V_0 is $V_A - V_C$
If R_i is not grounded, then it looks like this.

\[V_0 = V_A - V_C \]
\[V_i = V_B - V_C \]
If R_i is not grounded, then it looks like this.

V_0 is $V_A - V_C$

V_i is $V_B - V_C$

so $\frac{V_o}{V_i} = \frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}$
We can redraw the circuit slightly differently.
We can redraw the circuit slightly differently.
We can redraw the circuit slightly differently.

Since \(\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i} \)
We can redraw the circuit slightly differently.

Since $\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}$

This can be rewritten $V_A - \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$
The derivation goes like this:
The derivation goes like this:

\[
\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}
\]
The derivation goes like this:

\[
\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}
\]

\[
V_A - V_C = \left(1 + \frac{R_f}{R_i}\right)(V_B - V_C)
\]
The derivation goes like this:

\[
\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}
\]

\[
V_A - V_C = \left(1 + \frac{R_f}{R_i}\right) (V_B - V_C)
\]

\[
V_A - V_C = \left(1 + \frac{R_f}{R_i}\right) V_B - V_C - \frac{R_f}{R_i} V_C
\]
The derivation goes like this:

\[
\frac{V_A - V_C}{V_B - V_C} = 1 + \frac{R_f}{R_i}
\]

\[
V_A - V_C = \left(1 + \frac{R_f}{R_i}\right)(V_B - V_C)
\]

\[
V_A - V_C = \left(1 + \frac{R_f}{R_i}\right)V_B - V_C - \frac{R_f}{R_i}V_C
\]

\[
V_A - \left(1 + \frac{R_f}{R_i}\right)V_B = -\frac{R_f}{R_i}V_C
\]
Finally, we can set V_B to ground.
Finally, we can set V_B to ground.

$$V_B = 0$$
Finally, we can set V_B to ground.

So if $V_A - \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$
Finally, we can set V_B to ground.

So if $V_A - \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$

and $V_B = 0$
Finally, we can set V_B to ground.

So if $V_A = \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$

and $V_B = 0$

Then $V_A = -\frac{R_f}{R_i} V_C$
Finally, we can set V_B to ground.

So if $V_A - \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$

and $V_B = 0$

Then $V_A = -\frac{R_f}{R_i} V_C$ which is an inverting amplifier!
Finally, we can set V_B to ground.

So if $V_A - \left(1 + \frac{R_f}{R_i}\right) V_B = -\frac{R_f}{R_i} V_C$
and $V_B = 0$
Then $V_A = -\frac{R_f}{R_i} V_C$ which is an inverting amplifier!

So the feedback factor, β, is the same as for a non-inverting amplifier.