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Chapter 1

Goals for PC132 Labs

The labs in PC132 will build on the skills developed in the labs for PC131.
Emphasis will be on learning how to do experimental science, and on how to
communicate well, rather than on illustrating particular physical laws.

For these reasons, the goals of the labs in this course will fall into these
general areas:

• linearizing equations

• error bars on graphs

• least squares fitting
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Chapter 2

Instructions for PC132 Labs

Students will be divided into sections, each of which will be supervised by a
lab supervisor and a demonstrator. This lab supervisor should be informed
of any reason for absence, such as illness, as soon as possible. (If the student
knows of a potential absence in advance, then the lab supervisor should be
informed in advance.) A student should provide a doctor’s certificate for
absence due to illness. Missed labs will normally have to be made up, and
usually this will be scheduled as soon as possible after the lab which was
missed while the equipment is still set up for the experiment in question.

It is up to the student to read over any theory for each experiment and
understand the procedures and do any required preparation before the labora-
tory session begins. This may at times require more time outside the lab than
the time spent in the lab.

You will be informed by the lab instructor of the location for submission
of your reports during your first laboratory period. This report will usually
be graded and returned to you by the next session. The demonstrator who
marked a particular lab will be identified, and any questions about marking
should first be directed to that demonstrator. Such questions must be directed
to the marker within one week of the lab being returned to the student if any
additional marks are requested.

2.1 Expectations

As a student in university, there are certain things expected of you. Some of
them are as follows:
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4 Instructions for PC132 Labs

• You are expected to come to the lab prepared. This means first of all
that you will ensure that you have all of the information you need to
do the labs. After you have been told what lab you will be doing, you
should read it ahead and be clear on what it requires. You should
bring the lab manual, lecture notes, etc. with you to every lab. (Of
course you will be on time so you do not miss important information
and instructions.)

• You are expected to be organized This includes recording raw data with
sufficient information so that you can understand it, keeping proper
backups of data, reports, etc., hanging on to previous reports, and so
on. It also means starting work early so there is enough time to clarify
points, write up your report and hand it in on time.

• You are expected to be adaptable and use common sense. In labs it
is often necessary to change certain details (eg. component values or
procedures) at lab time from what is written in the manual. You should
be alert to changes, and think rationally about those changes and react
accordingly.

• You are expected to value the time of instructors and lab demonstrators.
This means that you make use of the lab time when it is scheduled,
and try to make it as productive as possible. This means NOT arriving
late or leaving early and then seeking help at other times for what you
missed.

• You are expected to act on feedback from instructors, markers, etc. If
you get something wrong, find out how to do it right and do so.

• You are expected to use all of the resources at your disposal. This in-
cludes everything in the lab manual, textbooks for other related courses,
the library, etc.

• You are expected to collect your own data. This means that you per-
form experiments with your partner and no one else. If, due to an
emergency, you are forced to use someone else’s data, you must explain
why you did so and explain whose data you used. Otherwise, you are
committing plagiarism.
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2.2 Workload 5

• You are expected to do your own work. This means that you prepare
your reports with no one else. If you ask someone else for advice about
something in the lab, make sure that anything you write down is based
on your own understanding. If you are basically regurgitating someone
else’s ideas, even in your own words, you are committing plagiarism.
(See the next point.)

• You are expected to understand your own report. If you discuss ideas
with other people, even your partner, do not use those ideas in your
report unless you have adopted them yourself. You are responsible for
all of the information in your report.

• You are expected to be professional about your work. This means
meeting deadlines, understanding and meeting requirements for labs,
reports, etc. This means doing what should be done, rather than what
you think you can get away with. This means proofreading reports for
spelling, grammar, etc. before handing them in.

• You are expected to actively participate in your own education. This
means that in the lab, you do not leave tasks to your partner because
you do not understand them. This means that you try and learn how
and why to do something, rather than merely finding out the result of
doing something.

2.2 Workload

Even though the labs are each only worth part of your course mark, the
amount of work involved is probably disproportionately higher than for as-
signments, etc. Since most of the “hands-on” portion of your education will
occur in the labs, this should not be surprising. (Note: skipping lectures or
labs to study for tests is a very bad idea. Good time management is a much
better idea.)

2.3 Administration

1. Students are advised to have a binder to contain all lab manual sec-
tions (if using the printed manual) and all lab reports which have been
returned. (A 3 hole punch will be in the lab.)
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6 Instructions for PC132 Labs

2. Templates will be used in each experiment as follows:

(a) The data in the template must be checked by the demonstrator
before students leave the lab.

(b) No more than 3 people can use one set of data. If equipment is
tight groups will have to split up. (i.e. Only as many people as fit
the designated places for names on a template may use the same
data.)

(c) The template must be included with lab handed in. If you use
a spreadsheet to collect your data, rather than the printed data,
print off the original spreadsheet page with your original data.

(d) If a student misses a lab, and if space permits (decided by the
lab supervisor) the student may do the lab in another section the
same week without penalty. (However the due date is still for their
own section.) In that case the section they record on the template
should be where the experiment was done, not where the student
normally belongs.

3. Answers to pre-lab questions are to be brought to the lab. They are to
be handed in at the beginning of the lab.

4. Answers to the in-lab questions are to be handed in at the end of the
lab.

5. Students are to make notes about pre- and in-lab question answers and
keep them in their binders so that the points raised can be discussed
in their reports. Marks for answers to questions will be separate from
marks for the lab. For people who have missed the lab without a
doctor’s note and have not made up the lab, these marks will be forfeit.
The points raised in the answers will still be expected to be addressed
in the lab report.

6. Post-lab questions are to be answered after calculations. For exercises,
answers are to be handed in and the mark for post-lab questions will
be part of the exercise mark. For labs, the answers should be included
as part of the lab report. The mark for post-lab questions will be part
of the mark for the lab report.
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2.4 Plagiarism 7

7. Pre-lab tasks are to be performed before the lab, and will get checked
off during the first few minutes of the lab.

8. In-lab tasks are to be performed during the lab, and must get checked
off before you leave the lab.

9. Post-lab tasks are to be performed after the lab, and will get checked
off during the first few minutes of the next lab period.

10. Labs handed in after the due date incur a penalty of 5% per day late to
a maximum penalty of 50%. After the reports for an experiment have
been returned, any late reports submitted for that experiment cannot
receive a grade higher than the lowest mark from that lab section for
the reports which were submitted on time.

2.4 Plagiarism

11. Plagiarism includes the following:

• Identical or nearly identical wording in any block of text.

• Identical formatting of lists, calculations, derivations, etc. which
suggests a file was copied.

12. You will get one warning the first time plagiarism is suspected. After
this any suspected plagiarism will be forwarded directly to the course
instructor. With the warning you will get a zero on the relevant sec-
tion(s) of the lab report. If you wish to appeal this, you will have to
discuss it with the lab supervisor and the course instructor.

13. If there is a suspected case of plagiarism involving a lab report of yours,
it does not matter whether yours is the original or the copy. The
sanctions are the same.

2.5 Calculation of marks

The calculation of the final lab mark is explained in Appendix C,
“Marking Scheme”.
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Chapter 3

Presenting Data in Reports

3.1 Introduction

Previously, you have prepared lab reports primarily with a marker in mind.
However you should be starting to gear your reports to a more general reader.
How this will change your report should become clear as you read the fol-
lowing:

3.1.1 Purpose of a report

The goal of presenting a report is to inform, not to impress. That means
that, on the one hand, you don’t want to fill space with drivel just to make
the reader think you know something, (it’s not likely to work), but on the
other hand, at times it may be helpful to repeat a piece of useful information
two or three times in a report to save the reader having to flip back and forth.
Individual sections should be as self–contained as possible, so that a reader
is not normally forced to hunt for pertinent facts all through the report.

3.1.2 Structuring a report

In some labs, lab templates may have been used to organize reports in a very
standard way to give some uniformity to the reports. Now you will not have
that order imposed, and so you will have to structure your own reports so
that they are understandable. Part of what this will require is for you to put
in enough “English glue” to make the report easy to read, even (especially!)
for someone who does not have the lab manual at hand.
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10 Presenting Data in Reports

3.1.3 Moving from lab notes to a report

When handling data, either to analyze it or to present it, it is important to
make a distinction between between utility and clarity. In other words, how
you set up a spreadsheet to analyze data or graph it may not be the way
that you should set it up for someone else to look at. Similarly, showing the
output block from a least squares fit reflects whether you did it correctly,
but what you should present is the meaningful results of the fit, not every
bit of output. (If it needs to be included for a marker, put it in an appendix
so that it’s there, but does not hurt the flow of the report.) Following are
some guidelines for presenting data for the reader, not for the writer or the
marker.

3.2 Text

• Grammar and spelling count!

• All numerical quantities must include uncertainties!

• In the text of a report, all symbols should be explained, especially if
they are non–standard (for instance if you use “w” instead of “ω”).
For instance “w is the angular frequency in rads/sec.”) Units should
be given for each quantity as well.

• The report should have brief descriptions of procedures, etc., so that
a person not following the manual can still make sense of the data.
If you are following a manual, you need not go into great detail, but
the significance of parameters stated, etc. should be explained; eg.
“current was measured by calculating the voltage across resistor RM”

• Quotes, standard values, etc. should be foot-noted and referenced.

• Derivations may be done by hand (if long), but if you are using a
word processor, this is a chance to learn more features if you use it to
do at least the short derivations. Make sure the symbols you use in
derivations match the symbols you use in the text. (See above example
with w and ω.)

• Watch for similar or duplicate symbols; eg. e, the base for natural
logarithms, and e the charge on an electron (or in the above example
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3.3 Tables 11

where you might have both w and ω). If you have to use two symbols
like this in one report, change one (and define it!) or change both.
(For example, use q for the charge on an electron, or replace ex with
exp(x).)

• Quantities which would normally be expressed using scientific notation
with uncertainties should usually be presented in the standard form;
eg. (2.3± 0.2)× 10−6m.

The purpose of scientific notation is to remove placeholder ze-
roes, either before or after the decimal point, from a number.
Thus it often does NOT make sense in numbers in the range from
about 0.1→ 99, where there are no placeholder zeroes.

• All results should be given the correct number of significant figures;
i.e. one or at most two significant figures for uncertainties, and quan-
tities rounded so least significant digit is in the same place as the least
significant digit of uncertainty.

3.3 Tables

• Always include tables of raw data, even if you need to modify the data
to plot a graph. That way if you make a mistake in calculations, it will
be possible to correct later.

• Tables must have boxes around them and lines separating columns, etc.
i.e. unstructured spreadsheets are not OK.

• Any data which will be plotted in a graph should be shown in a table
with the same units and uncertainties as on the graph.

• No table should be split by a page break; if necessary make it into two
separate tables.

• All tables need names and numbers such as “Table 1” (which should
be referenced in the report), and meaningful labels which match the
text (or explanations of how the labels correspond to the quantities in
the text). Table 3.1has two obvious problems; the column labels are
somewhat cryptic, and much data is redundant.
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12 Presenting Data in Reports

Vx dVx Ix dIx Used (y/n)
0.10 0.02 1.5 0.3 y
0.19 0.02 1.3 0.3 y
0.24 0.02 1.2 0.3 y
0.41 0.02 0.8 0.3 n

Table 3.1: One way to do it

In Table 3.2, some of this is changed. This is much less “busy”, and more
descriptive.

Voltage Current
0.10 1.5
0.19 1.3
0.24 1.2
0.41 0.8†

All voltages ± 0.02 volts.
All currents ± 0.3 amps.
† point not used in fit.

Table 3.2: More concise way

Least squares fit output can be somewhat confusing; indicate which points
were used (if not all, as in the above example), the fit equation, and the
parameters calculated as well as their standard errors. Be sure to include
the proper units for both. A table may not even be a good way to give these.

3.4 Graphs

• All graphs must include error bars! If error bars in one or both dimen-
sions are too small to be seen on a graph, then a note should be made
on the graph to indicate this.

• Titles should be descriptive; i.e. they should give pertinent information
which is not elsewhere on the graph.

• Graphs can be annotated with fit results so that by looking at the graph
the reader can see fit results (with uncertainties, of course). Make sure
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3.5 Linearizations 13

to mark which points were used for the fit (if not all). Keep in mind
the above rules about symbols.

• Fit results should be given in terms of actual graphical quantities, not
x and y. For instance, “Slope is 4.5 ± 0.2 N/kg”; y-intercept is 3.1 ±
0.1N”, as opposed to “y=4.5x+3.1” which lacks uncertainties, units,
and relevance.

• Put units on each axis, and either use a grid for both dimensions, or
else none at all. (A horizontal–only grid looks kind of odd.)

• Graphs should be in the specified orientation. NOTE: a graph of y
versus x means y is on the vertical axis and x is on the horizontal axis.

3.5 Linearizations

• Always include the original (i.e. non-linearized) equation(s) as well as
the linearized one(s).

3.6 Least Squares Fits

• Always plot data (with error bars) before fitting to see that points make
sense. (Make sure error bars are correct!)

• Clearly identify data used in fit (if not all points are used).

• Give results meaningful names, such as “slope”, “standard error in
slope”, etc.

• Include units for slope, y-intercept, etc.

• Show the fit line on the graph with the data.

• Identify whether the graph shows “small” or “large” scatter, and then
according to that identification, do whichever of these is appropriate:

– Perform fit in such a way as to get standard errors in both y-
intercept and slope.
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14 Presenting Data in Reports

– Find maximum and minimum slopes (if they exist) and show them
on the graph with the data.

• Determine the uncertainties in the slope and the y–intercept from the
result above.

• If you would have expected either the slope and the y–intercept to be
zero, and it isn’t, then suggest why that might be so.

3.7 Other

Here are a couple of final tips.

Printing out a spreadsheet with formulas shown does not count
as showing your calculations.

The reader should not have to be familiar with spreadsheet syntax to make
sense of results.

You must discuss at least one source of systematic error in your
report, even if you reject it as insignificant, in order to indicate
how it would affect the results.
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Chapter 4

Graphs and Graphical Analysis

4.1 Introduction

One of the purposes of a scientific report is to present numerical information,
i.e. data and calculated results, in concise and meaningful ways. As with
other parts of the report, the goal is to make the report as self-explanatory
as possible. Ideally a person unfamiliar with the experiment should be able
to understand the report without having to read the lab manual. (In your
case, the reader can be assumed to be familiar with the general procedure of
the experiment, but should not be expected to be intimately familiar with
experiment-specific symbols. For instance, if you must measure the diameter
of an object in the lab, and use the symbol d for it, be sure to state what d
represents the first time it is used.)

A physical law is a mathematical relationship between measurable quan-
tities, as has been stated earlier. A graph is a visual representation of such a
relationship. In other words, a graph is always a representation of a particu-
lar mathematical relationship between the variables on the two axes; usually
these relationships are made to be functions.

As a representation of how data are related, a graph will usually contain
both data points and a fitted curve showing the function which the data
should follow. (The term “curve” may include a straight line. In fact, it is
often easiest to interpret results when an equation has been linearized so
that the graph should be a straight line. Linearization will be discussed in
Chapter 6, “Exercise on Linearizing Equations” .)

With single values which are measured or calculated, when there is an
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16 Graphs and Graphical Analysis

“expected” value, then uncertainties are used to determine how well the
experimental value matches the expected value. For a set of data which
should fit an equation, it is necessary to see how all points match the function.
This is done using error bars, which will be discussed later. In essence, error
bars allow one to observe how well each data point fits the curve or line on the
graph. When parameters of an equation, such as the slope and y-intercept
of a straight line, are determined from the data, (as will be discussed later),
then those parameters will have uncertainties which represent the range of
values needed to make all of the data points fit the curve.

4.2 Graphing

4.2.1 Data Tables

Often the data which is collected in an experiment is in a different form than
that which must be plotted on a graph. (For instance, masses are measured
but a graph requires weights.) In this case, the data which is to be plotted
should be in a data table of its own. This is to make it easy for a reader
to compare each point in the data table with its corresponding point on the
graph. The data table should include the size of error bars for each point, in
each dimension. Units in the table should be the same as on the graph.

Any graph must be plotted from data, which should be presented in
tables. Tables should

• have ruled lines outside and separating columns, etc. to make it neat
and easy to read

• have meaningful title and column headings

• not be split up by page breaks (i.e. unless a table is bigger than a single
page, it should all fit on one page.)

• have a number associated with it (such as “Table 1”) for reference
elsewhere in the report, and a name, (such as “Steel Ball Rolling down
Incline”) which makes it self–explanatory

• include the information required for any numerical data, i.e. units,
uncertainties, etc.

A sample is shown in Table 4.1.
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4.2 Graphing 17

i xi ∆xi ti ∆ti
(cm) (cm) (s) (s)

1 0.40 0.03 0.0 0.1
2 0.77 0.04 2.0 0.1
3 1.35 0.04 2.7 0.1

Table 4.1: Position versus Time for Cart

4.2.2 Parts of a Graph

1. Title

The title of a graph should make the graph somewhat self–explanatory
aside from the lab. Something like “y vs. x” may be correct but re-
dundant and useless if the person viewing the graph can read. “Object
in Free Fall” would be more helpful as the reader may be able to figure
out the significance of the graph herself.

2. Axis Labels

As above, “m” and “l” are not as useful as “added mass (m) in grams”,
and “length of spring (l) in cm”. In this case the words are meaning-
ful, while the symbols are still shown to make it easy to find them in
equations. Units must be included with axis labels.

3. Axis Scales

The following 3 points are pertinent if you are plotting graphs “by
hand”. If you use a spreadsheet, these things are usually taken care
of automatically.

(a) Always choose the scales of the axes so that the data points will
be spread out over as much of the plotting area as possible.

(b) Choose the scales in a convenient manner. Scales that are easy to
work with are to be preferred over scales such as ones where every
small division corresponds to 0.3967 volts, for example. A better
choice in such a case would be either 0.25, 0.50, or perhaps even 0.4
volts per division, the decision of which would be determined by
the previous constraint. If you have discrete, i.e. integer, values on
one axis, do not use scientific notation to represent those values.
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18 Graphs and Graphical Analysis

Figure 4.1: Wrong: Data, (not empty space), should fill most of the graph

(c) (0,0) does not have to be on graph – data should cover more than
1/4 of the graph area; if you need to extrapolate, do it numerically.

4. Plotting Points

Often, results obtained from graphs are slightly suspicious due to the
simple fact that the experimenter has incorrectly plotted data points.
If plotting by hand, be careful about this. Data points must be fitted
with error bars to show uncertainties present in the data values. If the
uncertainties in either or both dimensions are too small to show up on
a particular graph, a note to that effect should be made on the graph
so that the reader is aware of that fact.

Do not connect the points like a dot-to-dot drawing!
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4.2 Graphing 19

5. Points for Slope

In calculating parameters from a graph, such as the slope, points on
a line should be chosen which are not data points, even if data points
appear to fall directly on the line; failure to follow this rule makes the
actual line drawn irrelevant and misleading.

When plotting points for the slope, a different symbol should be used
from that used for data points to avoid confusion. The co–ordinates
of these data points should be shown near the point as well for the
reader’s information. If one uses graph paper with a small enough
grid, it may be possible to choose points for the slope which fall on the
intersection of grid lines which simplifies the process of determining
their co–ordinates. Of course, points for the slope should always be
chosen as far apart as possible to minimize errors in calculation.

6. Error Bars

Data points must be fitted with error bars to show uncertainties present
in the data values. If the uncertainties in either or both dimensions are
too small to show up on a particular graph, a note to that effect should
be made on the graph so that the reader is aware of that fact. Un-
certainties in quantities plotted on a graph are shown by error bars.
Figure 4.2 shows a point with its error bars. The range of possible val-
ues for the data point in question actually includes any point bounded
by the rectangle whose edges fall on the error bars. The size of the error
bars is given by the uncertainties in both coordinates. (Actually, the
point’s true value is most likely to fall within the ellipse whose extents
fall on the error bars. This is because it is unlikely that the x and y
measurements are both in error by the maximum amount at the same
time.) In fact, error bars may be in one or both directions, and they
may even be different in the positive and negative directions.

Is the origin a data point?

Sometimes an experiment produces a graph which is expected to go through
(0, 0). In this case, whether to include the origin as a data point or not
arises. There is a basic rule: Include (0, 0) as a data point only if you have
measured it (like any other data point). Often a graph which is expected to
go through the origin will not do so due to some experimental factor which
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20 Graphs and Graphical Analysis

x−∆x x x+ ∆x

y −∆y

y

y + ∆y

Figure 4.2: Point with error bars

was not considered in the derivation of the equation. It is important that
the graph show what really happens so that these unconsidered factors will
in fact be noticed and adjusted for. This brings up a second rule: If the
origin is a data point, it is no more “sacred” than any other data point. In
other words, don’t force the graph through (0, 0) any more than you would
through any other point. Doing a least squares fit will protect you from this
temptation.
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4.3 Graphical Analysis 21

x−∆x− x x+ ∆x+

y −∆y−

y

y + ∆y+

Figure 4.3: Graph with unequal error bars in positive and negative directions

4.3 Graphical Analysis

Usually the point of graphing data is to determine parameters of the mathe-
matical relationship between the two quantities. For instance, when plotting
a straight line graph, the slope and y–intercept are the parameters which
describe that relationship.

Note that the slope and y–intercept and their uncertainties should
have units. The units of the y–intercept should be the same as
the y variable, and the slope should have units of

[slope] =
[y]

[x]
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22 Graphs and Graphical Analysis

Figure 4.4: A line through the origin is not always the best fit

4.4 Linearizing Equations

In many cases, the mathematical model you are testing will suggest how the
data should be plotted. A great deal of simplification is achieved if you can
linearize your graph, i.e., choose the information to be plotted in such a way
as to produce a straight line. (This is discussed in Chapter 6, “Exercise on
Linearizing Equations” .) For example, suppose a model suggests that the
relationship between two parameters is

z = Ke−λt

where K and λ are constants. If a graph of the natural logarithm of z is
plotted as a function of t, a straight line given by

ln z = lnK − λt

will be obtained. The parameters K and λ will be much easier to determine
graphically in such a case.

In particular, if we substitute y = ln z and x = t in the above equation,
and if the slope and y–intercept are measured to be, respectively, m and b,
then it should be clear that

m = −λ
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4.5 Curve Fitting 23

and

b = lnK

4.5 Curve Fitting

Always draw smooth curves through your data points, unless you have reason
to believe that a discontinuity in slope at some point is genuine.

Your graphs should not look like a dot–to–dot drawing.

Figure 4.5: Wrong: Graphs should not look like dot-to-dot drawings

If you are plotting the points using the computer, draw the curve by hand
if necessary to avoid this problem. However, do not fit data to a curve with
no physical significance simply so that all of the points fit.

Do not use an arbitrary function just because it goes through all
the data points!
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24 Graphs and Graphical Analysis

Figure 4.6: Wrong: Graphs should not have meaningless curves just to fit
the data

Note that unless a set of data exactly fits a curve, choosing a curve of
“best fit” is somewhat arbitrary. (For example, consider 4 data points at
(-1,1), (1,1), (1,-1) and (-1,-1). What line fits these points best?)

Usually, going “by eye” is as good as anything; the advantage to a method
such as the least squares fit is that it is easily automated, and is generally
reliable.

If plotting by eye, one should observe that the line of best fit will usually
have an equal number of points above and below it. As well, as a rule, there
should not be several points at either end of the graph on the same side of
the curve. (If this is the case, the curve can be adjusted to avoid this.)

Determining the y-intercept is easy if it is shown on the graph. However
if it isn’t, you can determine it from the points you used for the slope. If

m =
y2 − y1

x2 − x1

and
y = mx+ b
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for any points on the line, including (x1, y1) and (x2, y2) then

y2 = mx2 + b

so
b = y2 −mx2

and finally

b = y2 −
(
y2 − y1

x2 − x1

)
x2

4.6 Least Squares Fitting

Least Squares Fitting is a procedure for numerically determining the equa-
tion of a curve which “best approximates” the data being plotted. If we wish
to fit a straight line to data in the form

y = mx+ b

then the least squares fit gives values for b, the y-intercept, and m, the slope,
as follows:1

b =
(
∑
yi) (

∑
x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑
x2
i )− (

∑
xi)

2 (4.3)

and

m =
N (
∑
xiyi)− (

∑
xi) (

∑
yi)

N (
∑
x2
i )− (

∑
xi)

2 (4.4)

(Note: You do not need to calculate uncertainties for m and b during least
squares fit calculations like this. Uncertainties in m and b will be dealt with
later.)

1You may notice that a particular quantity comes up a lot. It is

N
(∑

x2i

)
−
(∑

xi

)2
(4.1)

It only takes a couple of lines of algebra to show that this equals

N (N − 1)σx
2 (4.2)

where σx
2 is the sample standard deviation of the x values.
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If you are interested, an appendix contains a derivation of the least squares
fit. In any case you may use the result above.

One important concept which will come up later is that of degrees of free-
dom, which is simply the number which is the difference between the number
of data points, (N above), and the number of parameters being determined
by the fit, (2 for a straight line). Thus, for a linear fit, the number of degrees
of freedom, ν, is given by:

ν = N − 2 (4.5)

4.6.1 Correlation coefficient

Equation 4.6 gives the square of the Pearson product-moment correla-
tion coefficient, which we will refer to simply as the correlation coefficient.2

R2 =
(N
∑
xiyi − (

∑
xi)(

∑
yi))

2

(N
∑
xi2 − (

∑
xi)2)

(
N
∑
yi2 − (

∑
yi)

2) (4.6)

The correlation coefficient, R, is a number which has a value between -1 and
+1, where a value of -1 indicates a perfect negative correlation, +1 indicates a
perfect positive correlation, and a value of zero indicates no correlation. Thus
R2 is a value between zero and 1 indicating just the strength of a correlation.
The closer R2 is to one, the stronger the correlation between two variables.
To put it another way, the closer it is to one the better one variable can be
used as a predictor of the other.

4.7 Uncertainties in Graphical Quantities

After the slope and intercept have been calculated, their associated errors
are calculated in one of two ways depending on the data. (This is analogous
to the idea that the uncertainty in the average is the bigger of the standard
deviation of the mean and the uncertainty in the individual values.) The two
possible cases are outlined below.

2As long as we’re dealing with a linear fit, this is the quantity that would commonly
be used.
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Unless the points fit exactly on a straight line, any graph with
big enough error bars will fit the first case, and any graph with
small enough error bars will fit the second. It is the relative size
of the error bars which determines which case it is.

4.7.1 Small Scatter of Data

If the scatter in the data points is small, a straight line which passes through
every error bar on the graph can be found, as shown in Figure 4.7. This
indicates that the uncertainties in your results are primarily due to the un-
certainties of the measuring instruments used.
The slope and intercept can be found graphically, by eye or using the least
squares fit method.

Line of minimum slope

Line of maximum slope

Figure 4.7: Small Scatter of Data Points

To obtain error estimates in these quantities, one draws two lines: a line
with the maximum slope passing through all the error bars; and the line
with the minimum slope passing through all the error bars. These extremes
will determine the required uncertainties in the slope and intercept. (In this
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graph and the one following, boxes have been drawn around each point and
its error bars to indicate the “uncertainty region” around each point. These
would not usually be on a graph, but they are shown here for illustration.)

The points for the maximum and minimum slope will not always
be the endpoints on the graph. Also, the data points providing the
endpoints for the two lines will not usually be the same for both.
If the maximum and minimum slope are not symmetric about the

average, you can calculate

∆m ≈ mmax −mmin

2

and

∆b ≈ bmax − bmin
2

For negative slope

For positive slope

( x1 −∆x1, y1 + ∆y1)
( x2 + ∆x2, y2 −∆y2)

( x1 + ∆x1, y1 −∆y1)

( x2 −∆x2, y2 + ∆y2)

( x1 −∆x1, y1 −∆y1)

( x2 −∆x2, y2 −∆y2)

( x2 + ∆x2, y2 + ∆y2)
( x1 + ∆x1, y1 + ∆y1)

Figure 4.8: Maximum and Minimum Slope Coordinates from a Point

If we label two points x1 and x2, where x1 < x2, then we can see from
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Figure 4.8 that the steepest line which touches the error bars for both x1 and
x2 is the line between (x1 + ∆x1,y1 − ∆y1) and (x2 − ∆x2,y2 + ∆y2). The
slope of this line will then be

mmax =
(y2 + ∆y2)− (y1 −∆y1)

(x2 −∆x2)− (x1 + ∆x1)
(4.7)

and then the y-intercept is given by

bmin = (y1−∆y1)−mmax(x1 + ∆x1) = (y2 + ∆y2)−mmax(x2−∆x2) (4.8)

Similarly the line with the least slope which touches the error bars for both
x1 and x2 is the line between (x1 −∆x1,y1 + ∆y1) and (x2 + ∆x2,y2 −∆y2).
The slope of this line will then be

mmin =
(y2 −∆y2)− (y1 + ∆y1)

(x2 + ∆x2)− (x1 −∆x1)
(4.9)

and then the y-intercept is given by

bmax = (y1 + ∆y1)−mmin(x1−∆x1) = (y2−∆y2)−mmin(x2 + ∆x2) (4.10)

The case for a negative slope is shown in Figure 4.8; the analysis is left to
the student.

The points for the maximum and minimum slope will not always
be the endpoints on the graph.

4.7.2 Large Scatter of Data

Often, you will not be able to find a line which crosses every error bar, as
with the data in Figure 4.9, and you will have to resort to the numerical
method below. In this case, the uncertainties in your graphical results are
primarily due to the random variations in the data.

Once these values for the slope and intercept are determined, the sum of
squares error, S is computed. For the linear case, S can be shown to have a
value of

S =
∑

y2
i −m

∑
xiyi − b

∑
yi (4.11)

In order to estimate the uncertainty in each parameter, the standard devia-
tion σ is computed from

σ =

√
S

N − 2
(4.12)
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Figure 4.9: Large Scatter of Data

where N − 2 is the number of degrees of freedom mentioned earlier. (Often
the symbol ν is used for degrees of freedom.) The standard error (i.e.
uncertainty) in the intercept is

σb = σ

√ ∑
x2
i

N (
∑
x2
i )− (

∑
xi)

2 (4.13)

and the standard error (uncertainty) in the slope is

σm = σ

√
N

N (
∑
x2
i )− (

∑
xi)

2 (4.14)
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As long as our data fit this second case, then we can use σb and σm
as the uncertainties in the y–intercept and the slope respectively,
and use the symbols ∆b and ∆m instead. Keep in mind, how-
ever, that if our data fit the first case, then these terms are not
interchangeable. Note that the uncertainties in the slope and y–
intercept should have the same units as the slope and y–intercept.

(Note: You do not need to calculate uncertainties for ∆m and ∆b since these
are uncertainties themselves!)

4.7.3 Large and Small Scatter and Instrument Preci-
sion

Since the size of the error bars will depend on the precision of the measuring
instruments, whichever case you wind up with indicates whether there is any
point in using more precise measuring instruments.

If you have the case of small scatter, then the uncertainty in the
slope and y-intercept depend on the error bars. In this case, get-
ting more precise measuring instruments would reduce the error
bars and thus the uncertainties. If you have the case of large
scatter, the uncertainties don’t depend on the error bars, so more
precise measurements wouldn’t help.

4.7.4 Sample Least Squares Calculations

Following is a calculation of the least squares fit and the standard error of
the slope and intercept for some test data.

N
(∑

x2
i

)
−
(∑

xi

)2

= (4)(0.3)− (1)2 = 0.2

b =
(
∑
yi) (

∑
x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑
x2
i )− (

∑
xi)

2 =
(16)(0.3)− (1)(4.3)

0.2
= 2.5

m =
N (
∑
xiyi)− (

∑
xi) (

∑
yi)

N (
∑
x2
i )− (

∑
xi)

2 =
(4)(4.3)− (1)(16)

0.2
= 6.0

S =
∑

y2
i −m

∑
xiyi − b

∑
yi = (66)− (6)(4.3)− (2.5)(16) = 0.2
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i xi x2
i xiyi yi y2

i

1 0.1 0.01 0.3 3 9
2 0.2 0.04 0.8 4 16
3 0.3 0.09 1.2 4 16
4 0.4 0.16 2.0 5 25

N
∑
xi

∑
x2
i

∑
xiyi

∑
yi

∑
y2
i

4 1.0 0.3 4.3 16 66

Table 4.2: Sample Least Squares Fit Data

σ =

√
S

N − 2
=

√
0.2

4− 2
= 0.316228

σb = σ

√ ∑
x2
i

N (
∑
x2
i )− (

∑
xi)

2 = (0.316228)

√
0.3

0.2
= (0.3878298)

σm = σ

√
N

N (
∑
x2
i )− (

∑
xi)

2 = (0.316228)

√
4

0.2
= (1.414214)

Thus, if our data are such that σb and σm are the uncertainties in the y–
intercept and the slope, and thus ∆b and ∆m, then

b = 2.5± 0.4

and
m = 6± 1

4.8 References

• The Analysis of Physical Measurements, Emerson M. Pugh and George
H. Winslow, Addison-Wesley Series in Physics, 1966, QC39.P8

• Errors of Observation and Their Treatment, J. Topping, Chapman and
Hall Science Paperbacks, 1972(4th Ed.)

• Statistics, Murray R. Speigel, Schaum’s Outline Series in Mathematics,
McGraw-Hill, 1961
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Chapter 5

Standing Waves on a String

5.1 Purpose

In this experiment we will attempt to use the properties of standing waves
on a string to measure the mass density of a string in order to determine
which of two sample strings it matches.

5.2 Introduction

This experiment will introduce graphical analysis, including linearization,
graphing and least squares fitting.

This experiment illustrates the situation where you can’t directly
measure a quantity, but instead must use other physics principles
to determine it indirectly. The process you go through will take
several weeks, as in PC131. The physics involved will be covered
in the first couple of labs, so most of your focus will be on how
to analyze the results and prepare the report.

This lab will actually be broken into parts, so you will spend several weeks
to produce the report. After you know how to do this, you will be able to
produce reports much more quickly.

The schedule will be somewhat like this:

• Collect data, including uncertainties in the raw data.

• Figure out how to produce a linear graph from the data.
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34 Standing Waves on a String

• Make a linear graph, and from the graph determine the slope and y-
intercept and their uncertainties.

• Using the graphical quantities, i.e the slope and y-intercept and their
uncertainties, calculate numerical results, including uncertainties.

• Interpret the results and draw quantitative and qualitative conclusions.

• Learn how to write up “Discussion of Uncertainties” and “Conclusions”
in your report.

(Notice that two of the steps are new this term; the rest are the same as in
PC131.)

After that, you will hand in the lab.

5.3 Theory

Consider first a very long string, one end of which is firmly fixed in position
(very far away), the other end of which is in your hand. If some tension is
kept in the string, and you give the string a flick with your wrist, a pulse will
originate from your hand and travel along the string away from your hand.
The motion of your hand is perpendicular to the direction in which the pulse
travels along the string or transverse to it. This transverse motion of the
string results in each point on the string moving transverse to the motion of
the wave as the wave passes.

Next consider the same long string. If the hand is moved quickly up and
down in a regular manner, keeping the string taut, a wave will be generated
which will travel along the string away from your hand. This is a transverse
wave because each particle of the string moves up and down while the wave
itself moves horizontally along the string. The wave itself is traveling along
the string, and thus we have created a traveling transverse wave in the
string.

This wave will appear, to a person viewing the string from the side, as
alternating crests and troughs which move steadily away from the hand along
the string. If this viewer watches one particular particle of the string, he will
see it move up and down regularly, transverse to the motion of the wave.

Considering this traveling wave, if the viewer took a “fast” snapshot of
it, it would look somewhat like Figure 5.1. (The dotted line represents where
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crest

trough

Figure 5.1: Creating a Wave “By Hand”

Figure 5.2: Traveling Wave at Different Times

the string would lie if the hand were at rest and the hand and string were
both “frozen” for the duration of the snapshot.)

Neglecting the hand, if we were to take another snapshot shortly after the
first and superimpose the two snaps, (drawing in the later one as a dashed
line), we might see something like Figure 5.2, (i.e. the crests and troughs are
moving steadily to the right along the string with a speed v. If we take a
rapid succession of such snaps, we will soon find one in which the string lies
exactly over the string in the first picture taken; each crest (or trough) has
moved precisely to the position where there was a crest (or a trough) in the
first snap.

We say that the distance this wave has traveled is one wavelength, λ.
It is exactly equal to the distance between any consecutive pair of crests (or
troughs) in one of the pictures. The wave thus moves one wavelength λ at
speed v. The time for this to occur is called a period P of the wave. It is
also the time taken for the hand at the end of the string to complete one of
its regular (periodic) cycles of oscillation.

The wave’s velocity, v, is thus equal to the distance λ it traveled in one
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36 Standing Waves on a String

period P, i.e.

v =
λ

P
(5.1)

In describing the hand’s motion, which repeats itself every period P, it is
perhaps more common to think of the number of times per second that the
hand makes this cyclical motion. This quantity we call the frequency,f , of
oscillation of the hand, and thus of the wave itself. If the length of time per
cycle is the period P (in seconds), then the frequency f (in cycles/second, or
Hertz) is its reciprocal.

f =
1

time
cycle

=
cycles

time
=

1

P
(5.2)

(Note: 25Hz = 25 cycles per second, or cps.)
We now have two equations relating the wave’s period, frequency, wave-

length, and velocity; namely

v =
λ

P
(5.3)

and

v = fλ (5.4)

It can also be shown theoretically that the velocity of the wave traveling
along the string is given by

v =

√
T

µ
(5.5)

where T is the tension in the string and µ is the mass per unit length of
the string, i.e. its linear mass density.

Now, consider the same string, but with much shorter length, so that the
fixed end is now close to the free end. Also, consider that the free end is now
being “shaken” by an electromechanical device instead of the hand of the
now–exhausted student. The electromechanical device can shake the string
periodically at a higher frequency than the hand for as long as necessary
without fatigue, unlike the student.

The waves generated by the shaker travel along the string as previously,
but they now strike the fixed end and are reflected there. The actual shape
of the string at any instant is a combination of the incident and reflected
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waves, and may be quite complex. However, under the proper set of con-
ditions for T , v, λ, and f , the incident and reflected waves may combine
producing regular shapes on the string. Such waves are called stationary or
standing waves.

These standing waves occur if and only if the distance between the fixed
and shaken ends of the string, (which is simply its length, L), is some integral
number of half-wavelengths of the traveling wave. The waves then “fit” nicely
into the length of the string. The incident and reflected waves reinforce each
other over regions of large amplitude of vibration of the string called loops,
and cancel each other at points on the string called nodes at which the string
exhibits no motion at all. Examples of this are shown in Figure 5.3.

Our governing equation is a combination of Equations 5.4 and 5.5

f =
1

λ

√
T

µ
(5.6)

from which the mass density of the string may be determined. In this ex-
periment, the oscillator frequency is fixed and known, and the string tension
T is to be varied with resulting wavelengths λ measured for several differ-
ent standing waves. The linear mass density µ will be determined, and also
measured.

Equation 5.6 can be linearized so that a graph can be produced from
which µ can be determined if f is known.

5.4 Procedure

5.4.1 Preparation

Since you may be doing this on your first week of labs, there are no pre-lab
requirements.

5.4.2 Investigation

The apparatus is set up with a string of length L between fixed and oscillating
ends.
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nodes

antinodes

L

L = λ
2

L = 3λ
2

L = 4λ
2

= 2λ

Figure 5.3: Standing Wave Patterns
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L� -

dL− d

L− d d

oscillator endpulley end

Figure 5.4: Measuring Wavelength

Method

1. Measure L and enter the result in Table 5.2. (Be sure to work in MKS
units.) Determine the realistic uncertainty in L and fill in the details
in Table 5.4.

2. Plug in the oscillator. The “fixed” end is where the string lies over the
pulley. Tension in the string is produced by a weight consisting of a
cup filled with a variable amount of copper shot. Adjusting the amount
of shot in the cup adjusts the tension in the string.

3. Pour in shot a little at a time until a standing wave pattern with several,
(preferably 7 or 8), loops is achieved. (Sometimes it helps to tug on
the string by hand to determine whether weight needs to be added or
subtracted, as well as to get an idea of how much weight to add or
subtract.)

4. Once this is achieved, measure the distance, d, from the oscillator to
the first node. Note that you should not use the loop closest to the
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oscillator in your calculations as the “node” at one end is not a part
of the string at all. Enter the data in Table 5.5.

5. Weigh the load pan with the shot in it, and enter the data in Table 5.5.

6. Adjust the mass until you see a noticeable change in the standing wave,
(for instance, when it becomes unstable), and weigh the pan again. You
can adjust the mass either up or down, whichever is easier. Record this
“adjusted mass” in Table 5.5.

Use the difference between the mass and the adjusted mass to determine
the uncertainty in the mass, ∆m.

7. Add shot to the cup until you get a standing wave pattern with one
fewer loop than before and repeat the steps 4 to 6 above for each pattern
up to and including one with just two loops.

8. If you can add enough mass to get a standing wave with a single loop,
then do so and record the mass. (In this case, your calculation of the
wavelength will be less precise due to the inclusion of the oscillator end,
but there is no way to avoid it for this case.)

If the values are not changing monotonically, you need to make note of
the following:

You may find your data actually seems to be giving you two different
frequencies of oscillation, where the higher frequency is twice the lower.
This is due to the physical operation of the oscillator, and can be
explained fairly simply, but that will not be done here. If this is the case
for your data, calculate the “effective wavelength” for the odd points
by multiplying or dividing the calculated wavelength by 2, (whichever
is appropriate), and identify these points in your data and on your
graph.1

9. The linear mass density of the string, µ, is measured by selecting a
piece of the same kind of string, of length `, and weighing it on a

1Normally it’s not a good thing to “adjust” data like this. In this case, however, since
the physics of the oscillator makes it oscillate at two frequencies which differ by an exact
factor of 2, then it makes sense. Also, since the points being adjusted are clearly identified,
it is not an attempt to deceive the reader.
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balance. Measure µ and ` for both sample strings and enter the results
in Table 5.2.

10. Determine the realistic uncertainty in ` and fill in the details in Ta-
ble 5.4.

11. It should be obvious that

µ =
mass of string

length of string
=
ms

`
(5.7)

where ms is the mass of the sample string from the balance. (Note that
µ is not volume mass density, but linear mass density.) Determine the

mass densities of the two sample strings with their uncertainties.

In-lab Questions

IQ1: Is there any reason that measuring between nodes should be better
than measuring between antinodes? Explain.

IQ2: What is the uncertainty in the number of nodes, N? Explain.

IQ3: What is the realistic uncertainty in the length used for each measure-
ment? Is it more due to getting the right mass to make the pattern stable, or
is it more due to measuring the position of the node? Does this vary during
the experiment? Explain.

IQ4: What is the realistic uncertainty in the mass used for each measure-
ment? Does the shot size affect this? Explain.

IQ5: What is the realistic uncertainty in the length used for the mass density
calculation, and what causes it?

IQ6: Why should using a long piece of string be better for calculating the
mass density than a short one?

IQ7: If the total length of the string is L, and the last node (near the
oscillator) has a length d, as in Figure 5.5 then determine the equation for
the wavelength λ if there are N nodes visible.
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L

d

d

N = 1

λ = 2L

N = 3

λ = L− d

N = 4

λ = 2
3

(L− d)

oscillator endpulley end

Figure 5.5: Wavelength Relation to d
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For instance,

• for N = 1, λ = 2L.

• for N = 2, λ = 2(L− d).

• for N = 3, λ = (L− d).

• for N = 4, λ = 2
3
(L− d).

• for N = 5, λ = 2
4
(L− d).

• · · ·

(It might help to note the pattern in the last two, and then re-write the
previous two in the same form to determine the general equation. Note
the first one does not fit the equation, since it uses the node ending at the
oscillator and the others don’t.)

In-lab Tasks

IT1: Check to see that first and fourth columns of Table 5.5 to see that both
are increasing monotonically.

IT2: Rearrange Equation 5.6 to solve for µ. Do an order of magnitude
calculation2 of the linear mass density of the string using one data point to
show that it is in the right range.

IT3: Read over each of the inlab and postlab questions, and decide where
the answers should appear in your lab report. (Note that some questions may
have parts of the answers in each section.) Fill in the results in Table 5.7.

5.4.3 Analysis

This lab can’t be completed until after the “Exercise on Graphing and Least
Squares Fitting using a Spreadsheet” lab exercise.

1. Calculate λ using the equations from IQ7:, and the tensions and fill in
Table 5.6.

2If you use a single data point to quickly calculate something, rather than using all of
the points for an average, graph, etc., it serves the same purpose as an order of magnitude
calculation; it lets you see quickly if the results seem to make sense.
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2. For each of the three linearizations of your data, plot the graph, perform
the least squares fit, and calculate the linear mass density, µ, and its
uncertainty from the results.

3. Using the equations for linear mass density, µ, and its uncertainty
from the linearizing exercise, determine linear mass density and its
uncertainty from each linearization.

4. Consider the similarities and differences in results of the three lineariza-
tions, and decide which one you will use for your lab report. If there
are big differences between the values of R2 for the different lineariza-
tions, you should see a difference in how linear each graph appears to
be. Different types of errors in the original data will affect the different
linearizations differently, and so if there’s a big difference you will have
a hint at what errors may exist in your data.

5. Depending on the linearization chosen, use the slope or y-intercept as
appropriate to determine a value for µ, the linear mass density of the
string.

6. Compare the value of µ obtained to the values obtained from the string
samples.

7. Determine whether the string matches either of the samples, and if so,
which one.

Post-lab Discussion Questions

Answers to the following questions will form the basis of the Dis-
cussion and Conclusions sections of your lab report. Write these
sections in paragraph form, with each individual answer under-
lined or highlighted. At the beginning of each question put the
question number in super-script. The goal is to have a flow to
the whole section, rather than to have the section appear as a
series of statements of unrelated facts. Be sure to include your
numerical results to explain your answers.
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Comparing linearizations

Q1: Did the linear mass densities given by the different linearizations agree
within experimental uncertainty? Discuss the similarities and differences in
results of the three linearizations, and explain which one you prefer and why.
Did your original preference from “Exercise on Linearizing Equations” still
make sense after you had plotted the data and done the calculations? Why
or why not?

For your preferred linearization

Q2: For your linearization, one of the graphical parameters (either the slope
or the y-intercept), was used to determine the linear mass density. The
other should have equaled a constant. Did the other parameter give you the
expected value for the constant? Explain.

Q3: From the shape of your linearized graph, is there any evidence of a
systematic error in your data? Explain.

Experimental insight

Q4: Based on whether the scatter in your graph was large or small, would
more precise measuring instruments have improved your results? Explain.

Q5: Based on your answer to Q4, would a more precise metre stick have
improved your results? Explain. (Your inlab questions should help you
answer this.)

Q6: Based on your answer to Q4, would a more precise balance have im-
proved your results? Explain. (Your inlab questions should help you answer
this.)

Q7: Does the magnitude of your calculated mass density agree with either
of the sample strings in the lab? Can you identify which type of string you
had?

5.5 Bonus

What factor determines the maximum number of nodes which can be ob-
served? Are data more reliable for oscillations with many nodes or with few

Winter 2016



46 Standing Waves on a String

nodes? Explain your answers.

5.6 Recap

By the time you have finished this lab report, you should know how to :

• collect data and analyze it, which may include

– graphing with error bars

– least squares fitting

• write a lab report which includes:

– title which describes the experiment

– purpose which explains the objective(s) of the experiment

– results obtained, including data analysis

– discussion of uncertainties explaining significant sources of uncer-
tainty and suggesting possible improvements

– conclusions about the experiment, which should address the orig-
inal objective(s).

5.7 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 7 70
Post-lab Questions 7 in report

Pre-lab Tasks 0 0
In-lab Tasks 3 30
Post-lab Tasks 0 0
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5.8 Template

My name:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:
Your string identifier is:

quantity symbol single/
given/ repeated/
mine constant

Not in equations

Table 5.1: List of quantities
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symbol value units instrument effective
reference precision zero uncertainty

( e.g. A.1) measure error

L

Not in equations

Table 5.2: Single value quantities

quantity symbol equation uncertainty

T

λ

µ

Table 5.3: Calculated quantities
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symbol factor bound units

Sources of systematic error

Sources of random error

Table 5.4: Experimental factors responsible for effective uncertainties
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Instrument
reference
(or name)

units

precision
measure

zero
error

number distance uncertainty hanging adjusted uncertainty
of 1/2 from in mass mass in

wavelengths end distance mass
total used d ∆d m m±∆m ∆m
N ( ) ( )

1 1∗ 0

2 1

3 2

4 3

5 4

Table 5.5: Resonance raw data
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λ ∆λ T ∆T
( ) ( ) ( ) ( )

Table 5.6: Modified data
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Where to answer
Question Discussion Conclusions
number (y/n) (y/n)

In-lab

Post-lab

Hints
“think” “agree”

“suggest” “equal”
“explain” “do (did, does) ”

“how” “significantly different”
“why” “support”
“what” “verify”

Table 5.7: Lab Report Organization
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Chapter 6

Exercise on Linearizing
Equations

6.1 Purpose

The purpose of the exercise is to develop skills in producing linear graphs
from various types of data and extracting results.

6.2 Introduction

This exercise will develop skills in linearizing data, so that a variety of rela-
tionships can be graphed as straight lines.

6.3 Theory

Often, the point of a scientific experiment is to try and find empirical val-
ues for one or more physical quantities, given measurements of some other
quantities and some mathematical relationship between them. For instance,
given a marble has a mass of 5 g, and a radius of 0.7 cm, the density of the
marble can be calculated given that v = 4/3πr3 and ρ = m/v. (For the sake
of simplicity, uncertainties will be ignored for now, although the calculation
of those should be familiar by now.)

Many times, however, rather than having one measurement of a quan-
tity, or set of quantities, we may have several measurements which should

Winter 2016



54 Exercise on Linearizing Equations

m

r

Figure 6.1: Non-linear equation
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all follow the same relationships, (such as if we had several marbles made
of the same material in the example above), and we wish to combine the
results. The usual way of combining results is to create a graph, and ex-
tract information (such as the density) from the slope and y–intercept of the
graph.

One may be tempted to ask why a graph should be better than merely
averaging all of the data points. The answer is that an average is completely
unbiased. The variation of any one point from the norm is no more or less
important than the variation of any other point. A graph, however, will show
any point which differs significantly from the general trend. Analysis of the
graphical data (such as with a least squares fit) will allow such “outliers” to
be given either more or less weight than the rest of the data as the researcher
deems appropriate. Depending on the situation, the researcher may wish to
verify any odd point(s), or perhaps the trend will indicate that a linear model
is insufficient. In any case, it is this added interpretive value that a graph
has which makes it preferable.

A plot is better than an average since it may indicate systematic
errors in the data.

The value in fitting the data to an equation is that once the fit has been
done, rather than continuing to work with a large amount of data, we can
simply work with the parameters of our fit and their uncertainties. In the
case of a straight line, all of our data can be replaced by four quantities;
m,∆m, b and ∆b.

A fit equation replaces a bunch of data with a few parameters.

The reason a linear graph is so useful is that it’s easier to identify whether
a line is straight than it is to identify whether it looks more like y = x2 or
y = x3, for instance.

A straight line is easy to spot with the unaided eye.

If the data fits an equation of the form y = mx+ b, then it is easy to plot
a straight line graph and interpret the slope and y–intercept, but it is rarely
that simple. In most cases, the equation must be modified or linearized
so that the variables plotted are different than the variables measured but
produce a straight line.
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Linearizing equations is this process of modifying an equation to pro-
duce new variables which can be plotted to produce a straight line graph. In
many of your labs, this has been done already.

Look again at y = mx+ b. Note that y and x are variables, (as each can
take on a range of values), while m and b are constants, (as there is only one
value for each for all of the data points). We can linearize an equation if we
can get it in the form

variable1 = constant1 × variable2 + constant2

There are a few things to note:

1. Several constants combined together produces another single constant.

2. Powers or functions of constants are also constants.

3. Constants may have “special” values of 0 or 1 so they appear “invisi-
ble”. For example

y = mx

is still the equation of a straight line, where b = 0. As well,

y = b

is the equation of a line where m = 0.

4. Variables may be combined together to form new variables.

5. Powers or functions of variables are also variables.

Note that linearizing an equation will produce expressions for
the slope and y–intercept which depend only on the constants
in the original equation, not on the original x and y variables.
This means that the constants can be related to the slope and y–
intercept rather than the original variables.

6.3.1 Techniques for Linearization

If a relationship involves only multiplication and division, (including powers),
then logarithms can be used to linearize. Sometimes taking roots or powers
of both sides of an equation will help.
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6.3.2 Procedure for Linearization

The steps are as follows:

1. Rearrange the equation to get one variable (or a function of it) on the
left side of the equation; this becomes your y variable.

2. Regroup the right side of the equation to create a term containing the
other variable (or some function of it).

3. Use the left-side variable (or the function of it) as your x variable, and
then your slope should be whatever multiplies it; your y intercept is
whatever additive term is left over.

Note: It is important to realize that you don’t need to understand an equa-
tion to linearize it; all you have to know is which parameters are variables
(i.e. things you have data for), and which parameters are constants (i.e.
things you want to calculate). Of course different experiments involving the
same relationship may make different parameters variable, and so how an
equation is linearized will depend on the data used. To again consider the
above example: The original equations were

v = (4/3)πr3 (6.1)

and
ρ = m/v (6.2)

where the quantities m and r are measured. (i.e. We have several marbles of
the same material, so we can get several measurements of m and r, but we
expect ρ to be the same for all of them.) Thus for this situation, m and r
are variables, and ρ is a constant. We can combine the two equations to get

ρ =
m

(4/3)πr3
(6.3)

or

ρ =
3m

4πr3
(6.4)

This equation has a constant on one side, and a mixture of variables and
constants on the other. First we should rearrange it to get a variable on the
left hand side. Suppose we rearrange the equation, giving

m = (4/3)πρr3 (6.5)
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This leaves a variable on the left. From this point on, there are two main
possibilities for how to proceed: 1

Method I

Now we can create a new variable, Y such that

Y = m

By the rule about powers of variables being variables, then we can create a
new variable X given by

X = r3

Then equation 6.5 above becomes

Y = (4/3)πρX (6.6)

since π is a constant, and ρ should be, and using the rule that combinations
of constants produce constants, then we can define M , a constant, (not the
same as m), as

M = (4/3)πρ

so equation 6.6 becomes

Y = MX + 0

which is the equation of a straight line. (In the case, B, the y–intercept
is zero.)2 So if we plot our “modified” variables, we should get a straight
line, passing through the origin with a slope M . How can we get ρ from the
graph? Well, from above

M = (4/3)πρ

so

ρ =
3M

4π

where M is the slope of the graph.

1Usually the process is not as explicit as this. i.e. one doesn’t usually create an X and
a Y , but doing this illustrates the procedure.

2Occasionally we can get a situation where the slope is similarly “invisible”, if it is 1
or 0.
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m

r3

Figure 6.2: One linearization
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Method II

We can take logarithms of both sides, so that Y such that equation 6.5 above
becomes

lnm = ln ((4/3)πρ) + ln r3 (6.7)

grouping the terms so one only contains constants (and so the combination
should be constant) and one only contains the variable r. We can bring down
the exponent so equation 6.7 becomes

lnm = ln ((4/3)πρ) + 3 ln r

Now we can create new variables, Y such that

Y = lnm

and

X = ln r

which is the equation of a straight line. So if we plot our “modified” variables,
we should get a straight line. How can we get ρ from the graph? Well, from
above

B = ln ((4/3)πρ)

so

ρ =
3

4π
eB

where B is the y-intercept of the graph. (In this case, the value you get from
the graph for the slope should suggest whether the fit is a good one.)

Remember that after linearization, our results depend on our
graphical quantities of the slope and the y-intercept, rather than
on the original measured quantities.

6.3.3 Choosing a Particular Linearization

Often there may be more than one linear form for the equation so there may
be more than one “right answer”. In this case, there are a few things which
may help you choose.
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ln (m)

ln (r)

Figure 6.3: Another linearization
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Simple variables

A preferable linearization is one which most simplifies understanding the
graph or interpreting the results. For instance, in the above example, it
would have been possible to use (4/3)πr3 instead of r3 as our x variable, but
that would make confusing axis scales and/or units (although it would have
made the slope be ρ with no calculation).

Spread of data

The spread of data will be different for each linearization. A graph with
points which are more equally spaced is generally preferable to one where
the points are concentrated in one area.

Size of error bars

Like the spread of data, the size of the error bars will be different for each lin-
earization. A graph with more equally sized error bars is generally preferable
to one where the error bars vary greatly in size for different points.

Usually it is preferable to separate variables and constants as
much as possible in your linearization so that graph variables are
easily related to experimental ones.

6.3.4 Uncertainties in Results

After determining how equation parameters relate to graphical quantities
as above, uncertainties can be determined as usual. In the above example
Method I gives

∆ρ =
3∆M

4π

while for Method II

∆ρ =
3

4π
eB∆B

or

∆ρ = ρ∆B
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6.3.5 Systematic Error in Variables

If there is systematic error in your data, it will show up on the graph.

• If your slope or y-intercept should have a specific value, such as zero,
then a value other that that suggests systematic error.

• Since your graph is supposed to be linear, then if the points actually
seem to be on a curve rather than a line there is probably systematic
error in the data

If systematic error is suggested in either of these ways, you should try
to determine which variable(s) may be responsible, and whether your data
values are above or below their correct value.

6.4 Procedure

6.4.1 Preparation

You are welcome to go ahead and do as much of the exercise on your own as
you wish; you can just bring a sheet with your question answers to the lab.
If you get it all done in advance, that’s great.

6.4.2 Investigation

The fundamental frequency of vibration of a string is given by

f =
1

λ

√
T

µ

λ and T , are measured variables and f is a constant, with an uncertainty
∆f . Determine µ and ∆µ.

There are 3 different ways of doing this. In each case, show what should
be plotted, how the error bars for your x (independent) and y (dependent)
variables are determined, what the slope and y-intercept will be, and how µ
and ∆µ come from the slope and y-intercept and their uncertainties.
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For instance, from the example above, using Method I we would say:

• Plot m vs. r3. (In other words, the independent (x) variable is r3 and
dependent (y) variable is m.)

• The uncertainty in the dependent variable is ∆m.

• The uncertainty in the independent variable is 3r2∆r.

• The slope of the graph will be M = (4/3)πρ.

• The y-intercept should be zero3.

• The density will be determined from the slope by the equation ρ = 3M
4π

.

• The uncertainty in the density will be determined from the slope by
the equation ∆ρ = 3∆M

4π
.

In-lab Questions

For each of the linearizations below, be sure to address all 7 points as in the
example above.

IQ0: What is the linearization if our dependent variable is λ? (See the
example above.)
Answer: First we have to rearrange the equation

f =
1

λ

√
T

µ

to get the dependent variable on the left, as follows:

λ =
1

f

√
T

µ

Then we need to regroup the right side to separate the independent variable4.

λ =
1

f
√
µ

√
T

3If the y-intercept turns out to be something other than zero, then there is some
systematic error in our experiment.

4There is another possibility here; see if you can figure out what it is.
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So the slope is the part that is multiplied by the independent variable,

slope =
1

f
√
µ

which means
√
µ =

1

slopef

and so

µ =
1

slope2f 2

The uncertainties in each of the quantities are calculated as usual. Specifi-
cally, if µ and f have uncertainties ∆µ and ∆f , and after the least squares fit,
the slope and y-intercept will simply be quantities m and b with associated
uncertainties ∆m and ∆b, then

∆µ = µ

(
∆slope2

slope2 +
∆f2

f2

)

= µ

(
2slope∆slope

slope2 +
2f∆f

f2

)
= µ

(
2

∆slope

slope
+ 2

∆f

f

)
= 2µ

(
∆slope

slope
+

∆f

f

)
using algebra, and given that the slope should be positive. (The uncertainty
determined by inspection is shown in the template in the example. Remember
that it doesn’t matter which method you use since they should usually give
similar results to one significant figure.)

IQ1: What is the linearization if our dependent variable is λ2? (See the
example above.)

IQ2: What is the linearization if our dependent variable is ln (λ)? (See the
example above.)

IQ3: Without considering the data, which of the above choices would you
prefer and why? (In other words, is there a choice that seems better to work
with, regardless of how the data fit?)
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In-lab Tasks

IT1: Fill in the headings for the columns in Tables 6.1,6.2, and 6.3.

IT2: Fill in the template with the equations, uncertainties, and units for the
slope and y-intercept for each linearization.

6.4.3 Analysis

Post-lab Tasks

There are no post-lab tasks for this exercise, although the results of this
exercise will be used in later exercises.

Post-lab Discussion Questions

There are no post-lab questions for this exercise, although much of the anal-
ysis from here will belong in your lab report

6.5 Bonus

You can do one of the questions below. In each of the following questions,
state the modified variables to be plotted, and state how the unknown(s)
may be determined from the graph.

1. The position of a body starting from rest and subject to uniform ac-
celeration is described by

s =
1

2
at2

s and t are measured variables. Determine a and ∆a.

2. The period of oscillation of a simple pendulum is

T = 2π

√
L

g

where L and T are measured variables. Determine g and ∆g.
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3. The Doppler shift of frequency for a moving source is given by

f = f0
v

v − v0

f and v0 are measured variables, f0 is fixed and known. Determine v
and ∆v. (Note that even though the notation might suggest otherwise,
in this case v0 is a variable, not a constant.)

4. The impedance of a series RC circuit is

Z =

√
R2 +

1

ω2C2

Z and ω are measured variables. Determine R , ∆R, C, and ∆C.

5. The conductivity of an intrinsic semiconductor is given by

σ = Ce
−Eg
2kT

σ and T are measured variables and k is a known constant. Determine
Eg, ∆Eg, C, and ∆C.

6. The relativistic variation of mass with velocity is

m =
m0√
1− v2

c2

m and v are measured variables. Determine m0, ∆m0, c, and ∆c.

7. The refraction equation is

µ1 sin θ1 = µ2 sin θ2

θ1 and θ2 are measured variables; µ1 is fixed and known. Determine µ2

and ∆µ2.

6.6 Recap

By the end of this exercise, you should understand the following terms:
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• linear graph

• linearized equation

You should also be able to:

• identify combinations of variables which should result in a linear graph

• produce a linear graph from any linearizable equation

6.7 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 3 75
Post-lab Questions 0 0

Pre-lab Tasks 0 0
In-lab Tasks 2 25
Post-lab Tasks 0 0

Bonus 5
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6.8 Template

independent dependent

Trial number
√
T λ

1

2

3

4

5

Table 6.1: λ Linearization

For this linearization,
The equation for the uncertainty in the independent variable is:

∆x = ∆
√
T ≈ 1

2
√
T

∆T (using algebra)

The equation for the uncertainty in the dependent variable is:
∆y = ∆λ

The equation for the slope is: slope = 1
f
√
µ

The equation for the y-intercept is: y − intercept = 0

The units for the slope are: mN−1/2

The units for the y-intercept are: m

The equation for the linear mass density, µ, is: µ = 1
slope2f2

The equation for the uncertainty in the mass density, ∆µ, is:

∆µ = ∆
(

1
slope2f2

)
≈ 1

slope2f2 − 1
(slope+∆slope)2(f+∆f)2

(using inspection, given that the slope and f should be positive)
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independent dependent
Trial number λ2

1

2

3

4

5

Table 6.2: λ2 Linearization

For this linearization,
The equation for the uncertainty in the independent variable is:
The equation for the uncertainty in the dependent variable is:

The equation for the slope is:
The equation for the y-intercept is:

The units for the slope are:
The units for the y-intercept are:

The equation for the linear mass density, µ, is:
The equation for the uncertainty in the mass density, ∆µ, is:
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independent dependent
Trial number ln (λ)

1

2

3

4

5

Table 6.3: ln (λ) Linearization

For this linearization,
The equation for the uncertainty in the independent variable is:
The equation for the uncertainty in the dependent variable is:

The equation for the slope is:
The equation for the y-intercept is:

The units for the slope are:
The units for the y-intercept are:

The equation for the linear mass density, µ, is:
The equation for the uncertainty in the mass density, ∆µ, is:
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Chapter 7

Exercise on Graphing and
Least Squares Fitting using a
Spreadsheet

7.1 Purpose

The purpose of this experiment is to become familiar with using spreadsheet
to produce graphs and analyze graphical data.

7.2 Introduction

While a spreadsheet has a lot of useful features for data analysis, etc. it was
designed primarily for use by people in business rather than for scientists,
and so there are some things which scientists wish to do which require a little
effort in a spreadsheet. Graphical analysis is one of the areas where this is
true, as you shall see. (Even with the extra work, it’s a lot more convenient
than doing it all by hand.)
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7.3 Theory

7.3.1 Graphing

Graph Type

The graph type mainly used by scientists is an x-y (or scatter) graph1. Do
not choose a line graph!

Colour

The default background colour, (grey in many cases), in many spreadsheets
just looks bad in graphs; it obscures the data and serves no purpose. Turn
the background colour off!

Gridlines

Grid lines should be either removed or in both dimensions. Gridlines in one
direction only look odd on an “xy” graph. Turn the gridlines off!

Text

The main text of a graph consists of x− and y− titles, a main title and
perhaps a sub–title. All of these may be set in a spreadsheet.

Series

A spreadsheet allows you to plot several different “series” of (x, y) data.
Each series can be customized, with choices for many things, including the
following:

• Patterns

Each series can be plotted with lines, symbols, or both.

Do not connect the points like a dot-to-dot drawing!

1 As long as there is some mathematical relationship between the variables, then an
x-y graph illustrates the relationship. However, if the independent variable does not have
a numerical value, then this doesn’t apply. For instance, if you were graphing reaction
time for men and women, then a bar graph would be the logical choice, since there’s no
numerical relationship between “men” and “women”.
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Do not use an arbitrary function just because it goes through all
the data points!

• Markers

There are many possible symbols which can be used for each series.

• Lines

There are several line types available for each series.One important fact
about how lines are used to connect points in a series; all points in a
series are joined by lines, unless the line for that series is turned off.

In science, it is almost always wrong to have a dot-to-dot draw-
ing. It is also wrong to have a curve which has no mathematical
significance. For this reason, data points should not be connected
by either line segments or a curve like a polynomial which is made
to pass through each data point. The only line or curve which
should be shown is the result of a fit which is based on some
theoretical mathematical relationship.

Matching up x and y Values

When you create an xy graph is created in a spreadsheet, you don’t input
data values as (x, y) pairs. Instead you select series for each of x and y. The
way the individual x and y values are associated is by where they occur in
their respective series.

In Figure 7.1 you can see that the 5th point in each series is highlighted.
Even though the series all start in different rows and columns, since the
number of cells in each is the same, corresponding values can be considered
to be related. (If a cell is blank, then the corresponding point or error bar
will not be plotted.)

Error Bars

In a spreadsheet, when you choose custom error bars, you can choose series
for both x and y, and even potentially different series for the + and −
directions.
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A2

x1

D4

∆x1

B10

y1 E11

∆y1

Figure 7.1: Spreadsheet layout with series for x, y, and error bars
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You don’t necessarily have to put markers on the ends of the error
bars; the value in doing so is to make it clear that you’re not just
using “+” symbols for plotting the data points. Also, if you are
including a grid on your graph, error bars without markers on the
end may be hard to distinguish. However if the error bars will be
clearly identifiable without markers, you don’t need to use them.

7.3.2 Least Squares Fitting

The point of plotting a graph in an experiment is usually to extract infor-
mation from the graph; often the data is plotted in such a manner that the
model being tested suggests that the data should fit a straight line. If it
does, then getting the slope and y intercept of the line of best fit along with
their associated uncertainties is necessary. One of the two usual ways to de-
termine the uncertainty in a graphical quantity is to calculate the standard
error. (The other involves finding lines of maximum and minimum slope.)
The following sections discuss using a spreadsheet to do least squares fitting
and to calculate standard errors.

Determining the equation of the line by formulas

In Chapter 4, “Graphs and Graphical Analysis”, the lab manual explains
how to calculate a least squares fit to a set of data. This can be done in
a spreadsheet by creating additional cells corresponding to each data point
which contain, respectively, x2, y2 and xy. At the end of the data, these
quantities can be totaled to give the sums necessary to do the least squares
fit.2

2You may notice that a particular quantity comes up a lot. It is

N
(∑

x2i

)
−
(∑

xi

)2
(7.1)

It only takes a couple of lines of algebra to show that this equals

N (N − 1)σx
2 (7.2)

where σx
2 is the sample standard deviation of the x values.
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Determining the equation of the line using LINEST()

Excel and LibreOffice each contain a function to do least squares fitting.
Unfortunately if produces a bunch of numbers without indicating what is
what. It also has to be configured to do things the way we want. Make sure
to configure it to give extra statistics.

When using LINEST() to calculate the least squares fit, always
set it to calculate the y-intercept, even when you expect it to be
zero! This gives you important information about the data.

Comparing the result given by the least squares fit using your formulas
with your regression output should indicate what several of the quantities
are.

(If you use LINEST() to do least squares fitting for a lab report, quote
the quantities given with the names used in the lab manual. The unidentified
block of cells given by many spreadsheets is not very meaningful.)

Determining uncertainties in the slope and y-intercept

Case I: Maximum and minimum slopes If the error bars are large
enough, then the line of best fit should go through all of the error bars. In
this case, there will be two data points which determine coordinates for a
line of maximum slope which crosses all of the error bars. Consider the case
for positive slope:

If we label two points x1 and x2, where x1 < x2, then we can see from
Figure 7.2 that the steepest line which touches the error bars for both x1 and
x2 is the line between (x1 + ∆x1,y1 − ∆y1) and (x2 − ∆x2,y2 + ∆y2). The
slope of this line will then be

mmax =
(y2 + ∆y2)− (y1 −∆y1)

(x2 −∆x2)− (x1 + ∆x1)

and then the y-intercept is given by

bmin = (y1 −∆y1)−mmax(x1 + ∆x1) = (y2 + ∆y2)−mmax(x2 −∆x2)

Similarly the line with the least slope which touches the error bars for both
x1 and x2 is the line between (x1 −∆x1,y1 + ∆y1) and (x2 + ∆x2,y2 −∆y2).
The slope of this line will then be

mmin =
(y2 −∆y2)− (y1 + ∆y1)

(x2 + ∆x2)− (x1 −∆x1)
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For negative slope

For positive slope

( , )

( , )

( , )
( , )

Figure 7.2: Maximum and Minimum Slope Coordinates from a Point
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and then the y-intercept is given by

bmax = (y1 + ∆y1)−mmin(x1 −∆x1) = (y2 −∆y2)−mmin(x2 + ∆x2)

The case for a negative slope is shown in Figure 7.2; the analysis is left to
the student.

The points for the maximum and minimum slope will not always
be the endpoints on the graph.

Index function To calculate the slope and y-intercept from a block of
data, we can use the index function. Its syntax is as follows:

• index(reference, row number, column number)

• reference is the cell range to look in

• row number (starts at one)

• column number (starts at one)

So if we have a data set of 6 values where the x values start in A2, and the
∆x values start in D4, then we can get

x2 + ∆x2

by the formula

= INDEX(A2 : A7,2,1) + INDEX(D4 : D9,2,1)

(Note that the only difference is in which block of data to use.) You’d
probably write the formula as

= INDEX($A$2 : $A$7,2,1) + INDEX($D$4 : $D$9,2,1)

so that you could copy it and still refer to the same blocks of data.

Case II: standard errors If the error bars are small enough, then the
points will be scattered in such a way that no line can be drawn which
crosses all of the error bars. In this case, the uncertainties in the slope and
y-intercept reflect the scatter of the points. In this case, the uncertainty in
the slope and y-intercept will be calculated using the standard errors in
the slope and y-intercept, in much the same way that the uncertainty for an
average value is calculated using the standard error of the mean.
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7.3.3 Displaying Lines

Unless you are going to give the equation of a line or curve, do
not show it on a graph!

Plotting arbitrary lines

To display a line on the graph, such as a best fit line, one can use a series
which has not yet been used. When one knows the equation of a line, all one
needs is two endpoints so that a line can be drawn between them. To allow
this, include 2 values at the end of your x series, xmin and xmax which are
the minimum and maximum values from the x data, respectively. Placing
the y values calculated from the line equation in the corresponding cells of
another series will allow a line to be plotted between those points. (Set the
format for that series to lines only.)

Using “trendline”

There is a built-in feature called trendline which allows you to display various
fits to data. A linear trendline is, in fact, a least squares fit. Unfortunately,
this feature does not automatically display the parameters for the fit, so it’s
not as much use as it could be.

7.4 Procedure

7.4.1 Preparation

You are welcome to go ahead and do as much of the exercise on your own
as you wish; you can just bring your spreadsheet with you to the lab and
demonstrate the points indicated. If you get it all done in advance, that’s
great.

If you do it on your own, then print a copy of the spreadsheet showing
formulas along with the ones indicated in the post-lab questions. (You only
need to show the formulas for rows mentioned in the instructions.) Print the
graphs as well.
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Pre-lab Tasks

PT1: Read over Chapter 4, “Graphs and Graphical Analysis”, and copy the
Equations 4.3 to 4.14 to the appropriate places below. (For instance, copy
Equation 4.4 to complete Equation ??.) If you don’t want to print the pages

of the manual, copy Equations 4.3 to 4.14 to a piece of paper and bring it
with you.

PT2: Open the spreadsheet for this exercise from the web page. On the
tabbed pages for “raw data” and the three linearizations, insert rows as
needed and type in your linearized data for each of the 3 linearizations. Save
the spreadsheet on a USB memory stick or in your WLU account to bring
to the lab.

PT3: Rewrite the Equations 4.7, 4.8, 4.9, 4.10 for mmax, bmin, mmin, bmax
for a line with negative slope.

mmin =

bmax =

PT4: Fill in the co-ordinates from PT3 in Figure 7.2.

Figure 7.3: Spreadsheet page for raw data
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Figure 7.4: Spreadsheet page for first linearization

Figure 7.5: Spreadsheet page for second linearization

Figure 7.6: Spreadsheet page for third linearization

7.4.2 Investigation

In-lab Tasks

In this exercise the in-lab tasks appear throughout the section.

Part 1: Plotting a Graph
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

Setting up the spreadsheet (Excel instructions) Use the data which
is already in the spreadsheet. Only change to your own linearized data after
the formulas have all been set up correctly.

1 Load the graph from the lab page.

2 Insert a chart in the box on the first tabbed page.

• Make sure it is an xy (scatter) graph.

Figure 7.7: Adding a series to the graph: step 1
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

Figure 7.8: Adding a series to the graph: step 2

• The x series should be C6 to C9.

• The y series should be E6 to E9.

Figure 7.9: Basic graph without error bars
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

3 Click on the “Layout” tab. You should now see the options for error
bars.

Figure 7.10: Adding vertical error bars
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

• Note options for x and y error bars.

• Select y error bars, and pick Custom.

Figure 7.11: Custom vertical error bars

• Select series F6 to F9 for both + and -.
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

Figure 7.12: Adding horizontal error bars

• Repeat for x error bars, using D6 to D9.
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 90.

Figure 7.13: Custom horizontal error bars

End of Excel specific instructions for Part 1. Go to
page 95.
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These instructions are for using LibreOffice. If you are
using Excel, go back to page 84.

Setting up the spreadsheet (LibreOffice instructions) Use the data
which is already in the spreadsheet. Only change to your own linearized data
after the formulas have all been set up correctly.

1 Load the graph from the lab page.

2 Insert a chart in the box on the first tabbed page.

• Make sure it is an xy (scatter) graph.

Figure 7.14: Choosing an xy graph
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These instructions are for using LibreOffice. If you are
using Excel, go back to page 84.

• Right click on the graph and select Data Range to select data.

Figure 7.15: Adding a series to the graph: step 1

• Choose options as shown:

Figure 7.16: Series in columns, without labels
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These instructions are for using LibreOffice. If you are
using Excel, go back to page 84.

Figure 7.17: Adding a series to the graph: step 2

• The x series should be C6 to C9.

• The y series should be E6 to E9.

Figure 7.18: Basic graph without error bars
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These instructions are for using LibreOffice. If you are
using Excel, go back to page 84.

3 Right click on a data point to allow you to format the series.

Figure 7.19: Adding vertical error bars

• Note options for x and y error bars.

• Select y error bars, and pick Cell Range.

Figure 7.20: Using a cell range for vertical error bars

• Select series F6 to F9 and check Same Value for both .

Winter 2016



94
Exercise on Graphing and Least Squares Fitting using a

Spreadsheet

These instructions are for using LibreOffice. If you are
using Excel, go back to page 84.

Figure 7.21: Adding horizontal error bars

• Repeat for x error bars, using D6 to D9.

Figure 7.22: Using a cell range for horizontal error bars

End of LibreOffice specific instructions for Part 1
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Common instructions for Part 1.

At this point there should not be a line connecting the data
points. If there is, turn it off.

IT1: Demonstrate graph as is.

Figure 7.23: Graph with error bars (Excel)

Figure 7.24: Graph with error bars (LibreOffice)
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Spreadsheet

Part 2: Performing a Least Squares Fit Using Built-in Features

These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 98.

(Excel instructions) Here you’re going to identify the values produced
by Excel’s LINEST() function by comparing them to the values you got
from the formulas.

1 Go to the third tabbed page, and use the LINEST() function to do a
least squares fit.

• Put the function in C18, with constant=1 and stats=1.

• Highlight C18 to D22.

• On a PC, press 〈F2〉 followed by 〈CTRL〉〈SHIFT〉〈ENTER〉.
(On a MAC, click inside the formula editing box, and press

〈COMMAND〉〈ENTER〉.)
• Fill in B18 to B22 and E18 to E22 with names from the previous

page. (There are a few quantities that weren’t previously calculated
as well.)3

3One of the quantities is the number of degrees of freedom mentioned earlier. It
should be easy to identify. The two “extra” quantities produced are the Regression Sum
of Squares given by

SSR =
(∑

(yi − ȳ)
2
)
− S

which can be shown to be given by

SSR =
(∑

yi
2
)
−Nȳ2 − S

and F given by

F =
SSR
νR
S
ν

which you may find out about in a statistics class when discussing Analysis of Variance.
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These instructions are for using Excel. If you are using
LibreOffice, skip ahead to page 98.

Figure 7.25: Least Squares Fit Using LINEST

End of Excel specific instructions for Part 2 Go to
page 101.
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Spreadsheet

These instructions are for using LibreOffice. If you are
using Excel, go back to page 96.

(LibreOffice instructions) Here you’re going to identify the values pro-
duced by LibreOffice’s LINEST() function by comparing them to the values
you got from the formulas.

1 Go to the third tabbed page, and use the LINEST() function to do a
least squares fit.

• Put the function in C18, with constant=1 and stats=1.

• Use the function wizard.

Figure 7.26: LINEST using the function wizard
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These instructions are for using LibreOffice. If you are
using Excel, go back to page 96.

• Choose the “Array” option to show all of the output values.

Figure 7.27: Choosing the “Array” option

• Click OK.

• Fill in B18 to B22 and E18 to E22 with names from the pre-
vious page. (There are a few quantities that weren’t previously
calculated as well.)4

4One of the quantities is the number of degrees of freedom mentioned earlier. It
should be easy to identify. The two “extra” quantities produced are the Regression Sum
of Squares given by

SSR =
(∑

(yi − ȳ)
2
)
− S

which can be shown to be given by

SSR =
(∑

yi
2
)
−Nȳ2 − S

and F given by

F =
SSR
νR
S
ν

which you may find out about in a statistics class when discussing Analysis of Variance.
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Spreadsheet

These instructions are for using LibreOffice. If you are
using Excel, go back to page 96.

Figure 7.28: Least Squares Fit Using LINEST

End of LibreOffice specific instructions for Part 2
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Common instructions for Part 2.

3 On the graph, select data series as before, and choose linear trendline.
See that it fits on top of the best fit line from before, proving it is a
least squares fit.

IT2: Demonstrate graph as is. Show that the linear trendline is actually a
least squares fit.

Part 3: Finding Maximum and Minimum Slopes

Note that on the “Small Scatter” tab of the spreadsheet, the values
in cells D20 to D23 are point numbers, (i.e. point 1 is the
first data point, etc.), and so the values in each of those cells must
be integers, and they must be between 1 and N , since each one
refers to a data point number.

1 Go to fourth tabbed page, and put in reference to third page (i.e. page
using LINEST() ) to create meaningful tables.

2 Go to fifth tabbed page and add series for lines of maximum and mini-
mum slope using E20 to F21 and E22 to F23. Format the series like
the line of best fit to have no endpoints.

3 Change points referenced in D20 to D23 to produce lines of maximum
and minimum slope which cross all error bars.

4 Look at the cells calculating uncertainty in slope and y intercept and
understand how they are calculated using the index() function.

5 Put in formulas in C38, C39, E38, E39, F38, F39 to get endpoints
of lines of maximum and minimum slope which go the full width of the
graph. Replace these values for the series above. (E20 to F21 and
E22 to F23).

IT3: Demonstrate graph as is. Explain the determination of uncertainties
in slope and y-intercept this way.
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Spreadsheet

Figure 7.29: Adding lines of maximum and minimum slope

Figure 7.30: Full length lines of maximum and minimum slope

Once this spreadsheet is set up, you would only usually include the
information from either the “small scatter” or the “large scatter”
tab in a report; all of the other pages are just in order to make the
exercise more organized. (Don’t just print the spreadsheet page,
but use it as a guide to figure out what information to include and
how it should be organized.)
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7.4.3 Analysis

1. Insert rows as needed on each tab of the spreadsheet between rows 7
and 8 to allow as many data points as you have in your data from
“Standing Waves on a String”.

2. Copy row 7 and paste it over the inserted rows and the row that was
previously row 8.

3. Modify formulas on the inserted rows on any page where necessary to
work correctly with this change. If you’ve done things correctly, this
shouldn’t be necessary.

4. If not done as a pre-lab task, on the “raw data” tab, fill in your
raw data from “Standing Waves on a String”.

5. The three tabs following the “raw data” tab are for each of the lin-
earizations determined in the “Exercise on Linearizing Equations”. If
not done as a pre-lab task, use the linearization formulas to fill in
each of the tables with values calculated from the raw data.

6. For each linearization, replace the first page data with links to your
linearization data.

7. For each linearization, adjust the “summary” tab as appropriate, based
on whether the scatter is small or large.

Post-lab Tasks

T1: Print off the “summary” tab for each of the three linearizations, making
sure you make the appropriate changes for each in rows 4 and 5, and attach
them to the lab report, along with the graphs of each of the linearizations.

7.5 Recap

By the end of this exercise, you should understand the following terms:

• linear graph

• error bars
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Spreadsheet

• least squares fit

• correlation coefficient

• large scatter of data points

• small scatter of data points

In addition, you should, using a spreadsheet, be able to:

• plot a linear graph

• add error bars

• perform a least squares fit

• show the least squares fit line on the graph with the data

You should also be able to

• determine whether the points on a graph classify as either “small” or
“large” scatter, and calculate graphical uncertainties appropriately in
either case;

• compare different linearizations of the same function and to explain
why one may be preferred over others;

• suggest, based on your graphical uncertainties, whether or not having
more precise measuring instruments would improve the results;

• suggest, based on the shape of your graph, whether there is evidence
of systematic error in your data.

7.6 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 0 0
Post-lab Questions 0 0

Pre-lab Tasks 4 30
In-lab Tasks 3 50
Post-lab Tasks 1 20
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Chapter 8

Standing Waves in an Air
Column

8.1 Purpose

In this experiment sound waves are studied and a measurement of the velocity
of sound in air at room temperature is performed. Providing an understand-
ing of the meaning of the term longitudinal or compressional waves is
also a goal.

8.2 Introduction

This experiment will provide experience in graphing and least squares fitting.

NOTE: A tuning fork is a delicate scientific instrument. Please do not rap
the fork on hard surfaces or objects such as table–top edges; to make the fork
“sound” one of the best methods is to tap the fork on your knee or the heel
of your shoe.

8.3 Theory

Waves in air may be defined as periodic disturbances propagated through air
by virtue of the oscillations of the air particles. Unlike the transverse waves
generated on a tight string such as on a guitar, sound waves in air are an
example of a longitudinal wave. In such a wave, the motion of an individual

Winter 2016



106 Standing Waves in an Air Column

(a)

(b)

(c)

Figure 8.1: Motion of Air Molecule Near Vibrating Reed

air molecule is along the direction of travel of the wave; the mean position of
any particle is fixed, however it oscillates back and forth about this position
due to passage of the wave.

8.3.1 Longitudinal Waves

Consider a vibrating reed of some kind, fixed at its base and standing ver-
tically. If pulled to one side and released it will oscillate back and forth
periodically. Let us consider what happens to a single air particle when the
reed is set in motion. Firstly, nature abhors a vacuum and air will rush
into any space where the air density is less than that of its surroundings. In
Figure 8.1(a) our molecule is considered to be at rest. In Figure 8.1(b), the
reed has moved to the left creating a partial vacuum at the site where it was
a moment before. Our molecule charges into the rarefied space thus caused.
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λ

λ

R C R C

Direction of travel

Figure 8.2: Variation in Density of Air Molecules Due to Sound

Now, in Figure 8.1(c), the reed swings back to the right and pushes our par-
ticle or molecule to the right. This cycle repeats periodically buffeting our
molecule back and forth. Our molecule has the same effect on its neighboring
particles as does the reed on itself; buffeting them back and forth as well. A
sound wave is thus being generated, traveling off to the right. There is one
off to the left also, but let us neglect it for the present.

The disturbance propagated from the reed to our molecule is slightly
ahead in time of that executed by the molecule itself. Similarly, the distur-
bance propagated by our molecule to its neighbor on the right is also slightly
ahead in time of that actually executed by its neighbor This occurs because
of the finite velocity of the disturbances in air.

The overall result of the (slightly delayed) oscillations of the particles
relative to their neighbors, all oscillating along the direction of propagation
of the disturbance (longitudinally) is a sound wave propagating at the speed
of sound. If we were able to take a “snapshot” of this traveling wave, and
actually see the individual air molecules, we would see something like that
in the Figure 8.2.

• C represents a compression; a region where the density of air molecules
is higher than that the air would have if there were no sound wave
passing.

• R represents a rarefaction; a region in which the density of air molecules
is less than that which the air would have in the absence of the wave.
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• λ is the wavelength of the sound wave; the distance between consecutive
compressions (or rarefactions).

Another snapshot taken very quickly after the first would show exactly
the same picture, except that the compressions and rarefactions would all
have moved a slight distance to the right. A succession of such snaps would
reveal the same thing; the whole wave is moving, without change, to the
right, at speed v.

Note that the wave moves to the right. The individual particles do not;
they simply oscillate back and forth along the direction of travel of the wave,
with a fixed mean position.

The frequency ν of this wave is the same as that of the reed which gener-
ates it, or the frequency with which an ear drum would be set into oscillation
as the wave hits it. Frequency, wavelength, and velocity of this wave are
related as in the previous experiment by

v = νλ (8.1)

If we know ν, the oscillation frequency of the fork, and λ can be measured,
we thus can measure v, the speed of sound in air at room temperature.

If our wave is generated at the top of a column of air, the wave will be
propagated down the column from the fork, and will be reflected by the fixed
end. The motion of the individual air molecules will thus be determined by
the passage of both incident and reflected waves. At the resonance condition
in which a standing wave is generated in the column, there are certain
equally spaced points along the column at which the effects of incident and
reflected waves exactly cancel each other, and the air molecules don’t move
at all due to the waves passing. Such points we call nodes. Midway between
each neighboring pair of nodes the interaction of the two waves passing is
such as to create a maximum motion of the air particles; the action of one
wave being reinforced by that of the other wave. These regions are called
anti-nodes. The amplitude of molecular oscillation increases gradually from
zero at a node to a maximum at an anti-node.

This succession of nodes and anti-nodes is called a standing wave. The
distance between nodes is equal to one half–wavelength of the waves passing
in either direction.
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CR R

Figure 8.3: Air Density Near the End of a Tuning Fork

8.3.2 Motion of Air Near an Oscillator

Sound the tuning fork and hold it (handle pointing down) close to your ear,
slowly rotating it. You will notice that maxima and minima occur in the
emerging sound. This occurs because the wave generated between the fork
prongs is of different phase than that generated outside the prongs.

With one simple diagram, (Figure 8.3), this should be understood. The
fork is viewed from above, during an instant of its oscillation cycle. Rest
positions of the prongs are dashed, while the actual position is drawn with
solid lines (note: the fork prongs are coming together). Rarefactions R are
produced outside the prongs, and a compression C is produced between them.
As these waves propagate outward from the fork they will cancel each other
along the directions indicated by the arrows in the diagram. You should be
able to verify this by the simple experiment suggested above.

8.3.3 Speed of Sound in Air

The velocity of sound in air is related to the physical properties of air by

v =

√
k
p

d
(8.2)

where
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• p is the pressure (atmospheric)

• d is air density (at given pressure and room temperature)

• k is the adiabatic constant = 1.403, related to its specific heats at
constant pressure and volume.

For pressure in N/m2 and density in kg/m3, the velocity will be in m/s
Because air density decreases as air temperature increases, the speed of sound
increases as temperature rises. We can write

vT = v0(1 + αT ) (8.3)

where vT is the velocity of sound in air at temperature T (◦C).

• v0 is velocity of sound in air at 0◦C,

• α is the coefficient of expansion of the gas and α = 1
2(273.15)

1

• T is the gas temperature (◦C).

8.3.4 Resonance

Resonance, as the term is used in the theory of sound, is the intensification
of the sound wave from a source by means of the sympathetic vibration of
another body, called resonator, “tuned” to the same frequency. When an
organ pipe is used as a resonance chamber, standing waves are set up in the
air column of the pipe.

The simplest resonant chamber is a tube open at one end and closed at
the other, the sounding body being placed near the open end. If the tube
is of the proper length, standing waves are set up which reinforce the sound
emitted by the sounding source. In such a resonator there is a node at the
closed end (since the air molecules can’t move there) and an anti-node at the
open end. i.e. the shortest closed pipe which will resonate with a source of
given frequency (thus of given wavelength in air) is one whose length is one
quarter wavelength. A pipe 3 or 5 times as long will also act as a resonator for
this source as seen in Figure 8.4. A little thought will show that any closed
pipe whose length is an odd number of multiples of a quarter wavelength
will produce resonance. Owing to the fact that the maximum air molecule

1 Note that absolute zero is at −273.15◦C. That’s where this number comes from.
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Figure 8.4: Node Pattern in a Tube With an Open End

Winter 2016



112 Standing Waves in an Air Column

oscillations do not occur exactly at the open end of the pipe, the distance
AN in the shortest pipe of Figure 8.4 is not exactly λ/4. In fact, the length
of pipe which will have destructive interference, (i.e. a minimum), is given
by

Ln = n
λ

2
− ccr (8.4)

where r is the inner radius of the pipe, n = 1, 2, 3, . . ., and cc is a theoretical
correction factor, with a value of about 0.61.

8.4 Procedure

8.4.1 Preparation

Since you may be doing this on your first week of labs, there are no pre-lab
requirements.

8.4.2 Experimentation

Apparatus

• resonant air column setup

• tuning forks

• wave (sound) generator and speaker

• thermometer

Method

A sound of known frequency is produced at the mouth of a vertical column
of air in a glass tube partially filled with water. The length of the air column
from “open” end to “solid” bottom, (i.e. the water surface), is adjustable
by variation of the water reservoir level. Several anti-resonance positions
are to be determined for a single frequency, and from the average distance
between successive positions of this anti-resonance the wavelength of sound
in air is determined and thus the velocity of sound in air at room temperature
is determined as well.
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1. The apparatus should be self-explanatory. Use an erasable marker on
the column to mark the water level. Fill the resonance tube with water
as high as possible by raising the reservoir.

2. Turn on the sound generator over the open end of the column. Slowly
lower the reservoir and listen for a minimum of the sound as the res-
onance chamber gets slowly longer. Mark the position on the tube
where the anti-resonance is observed, and then record the reading at
that position. Repeat this 5 times and use the data to determine an
average value and its uncertainty.

3. Lower the reservoir further to locate the second anti-resonant length of
the column and measure it as above. Continue to lower the reservoir
in this manner until you have obtained as many anti-resonance lengths
as the air column will permit, taking 5 measurements of each as above.

4. Record the room temperature, T .

5. Use a Verneier caliper to determine the inner diamter of the tube so
that you can determine the inner radius of the tube. Record the inner
diamter, d.

Reality check: Without doing any calculations, but using your
head: What is the easiest way to estimate the wavelength of a
wave using this apparatus?

In-lab Tasks

IT1: Do an order of magnitude calculation of the velocity using Equation 8.1
and a wavelength estimate from above to show that it is in the right range.

In-lab Questions

IQ1: Can you tell if the effective uncertainty in the resonance position is
due to difficulty in holding the reservoir steady or in detecting the loudest
sound? How big is it?

IQ2: Do the resonance positions get harder to find lower down in the tube?

IQ3: Does the effective uncertainty depend on the frequency?
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8.4.3 Analysis

1. Plot a graph of Ln vs. n and from the graph determine values for both
λ and cc.

2. Compute v for the λ calculated above, and check it against the known
velocity which is obtained from Equation 8.3.

Post-lab Discussion Questions

Q1: Compare the values for λ, cc, and vT with the expected values. Do they
agree?

Q2: Find references for Equations 8.2 and 8.3.

Q3: Would more than five measurements have reduced the uncertainty in
Ln? If so, how many measurements would have reduced the uncertainty as
much as possible?

8.5 Bonus

8.6 Recap

By the time you have finished this lab report, you should know how to :

• Perform graphical analysis of data where there are error bars in one
direction only.

8.7 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 3 60
Post-lab Questions 3 in report

Pre-lab Tasks 0 0
In-lab Tasks 1 40
Post-lab Tasks 0 0
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8.8 Template

My name:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:

quantity symbol single/
given/ repeated/
mine constant

air pressure

air density

constant k

pipe inner
diameter
pipe inner
radius
temperature

Not in equations

Table 8.1: List of quantities
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symbol value units instrument effective
reference precision zero uncertainty

( e.g. A.1) measure error

k

r

T

ν

Not in equations

Table 8.2: Single value quantities

quantity symbol equation uncertainty

Table 8.3: Calculated quantities
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symbol factor bound units s/r

Table 8.4: Experimental factors responsible for effective uncertainties

Instrument
reference
(or name)

units

precision
measure

zero
error

anti-resonance position ( Ln )
number trial #

( n ) 1 2 3 4 5

1

2

3

4

5

Table 8.5: Resonance data
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Chapter 9

Exercise on Plotting Curves
Using a Spreadsheet

9.1 Purpose

The purpose of this exercise is to become familiar with using a spreadsheet
to produce curves of any function desired.

9.2 Introduction

Using a spreadsheet to graph data is convenient once you know what you’re
doing, and even plotting error bars and straight lines is relatively simple.
However, once you need to plot data which is not linear, things become a bit
more complicated.

9.3 Theory

Consider the data shown in Figure 9.1.

First of all, the graph does not have error bars. However it it also not smooth.
Dot-to-dot drawings do not usually belong in scientific reports; smooth curves
are usually more appropriate. The following discussion should help you to
use a spreadsheet to produce non–linear plots.
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Figure 9.1: Logarithmic Fit the Wrong Way

9.3.1 Displaying Curves

You have previously seen how a a line can be drawn by simply connecting its
endpoints. Similarly, a curve can be approximated by a series of very short
line segments between points along the curve. If the points are close enough,
the line will look smooth. If we wish to plot a curve in a spreadsheet, proceed
as follows:

1. Instead of just using two values, xmin and xmax , for an x–series, create
a series of values xi, i = 0 . . . N where

xi = xmin + i

(
xmax − xmin

N

)
so that

x0 = xmin

and

xN = xmax

and for each point

yi = f(xi)
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Figure 9.2: Logarithmic Fit the Right Way

Note that even though the x values for the first and last point are taken
from the original data, the y values are not, since the purpose is to find
points on the curve.

A value of 100 for N should be sufficient to make a smooth curve. If
not, make it bigger. You can try making it smaller if that many points
aren’t needed.

2. For each of the xi, calculate the corresponding yi value from the curve
equation and add this series to the graph.

3. Remove the markers and add lines for this series. All points in this
series will thereby be joined with line segments. You should be able to
produce a graph such as in Figure 9.2. (Error bars have been left off
for simplicity. They can be produced in the usual way.)

Note that in the graph of Figure 9.2, none of the data points actually fall on
the curve. This is often the case.
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9.3.2 Piecewise Defined Functions

In some cases, a curve must be made from data which must be fit to different
equations in different regions. In this case the trick comes in trying to join
the two fit equations smoothly.

Figure 9.3: Piecewise Defined Function

In this case,

f(x) =

{
F1(x), if x ≤ x1;

F2(x), if x ≥ x2.

where x2 > x1. To make the function f(x) continuous, we require that

f(x1) = F1(x1)

and

f(x2) = F2(x2)

To produce a smooth fit, then in addition we require that

f ′(x1) = F1
′(x1)
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and

f ′(x2) = F2
′(x2)

These 4 equations can be solved exactly by a polynomial in 4 unknowns, i.e.
an equation of the form

f(x) = αx3 + βx2 + γx+ δ

and therefore
f ′(x) = 3αx2 + 2βx+ γ

To solve this, we need to set up a system of equations as follows: If we
let

A =


x1

3 x1
2 x1 1

x2
3 x2

2 x2 1
3x1

2 2x1 1 0
3x2

2 2x2 1 0


and

B =


F1(x1)
F2(x2)
F1
′(x1)

F2
′(x2)


Then it should be clear that

AX = B

or

X = A−1B

where

X =


α
β
γ
δ


(F1
′(x1) can be determined by using x1 and the fit point immediately to its

left, and F2
′(x2) can be determined by using x2 and the fit point immediately

to its right.) This system can then be solved using the matrix invert and
multiply features of a spreadsheet.
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Note: This will produce a smooth graph; whether it produces an accurate
graph remains to be seen, (although smooth transitions are more common
than others). This should produce a graph such as in Figure 9.3. Error bars
have not been shown so that the smoothness of the curve can be seen easily.
As before, error bars should be included unless you are specifically told to
omit them.

9.4 Procedure

9.4.1 Preparation

Pre-lab Tasks

PT1: Bring the completed spreadsheet, (i.e. the one that you have filled
in), from the the “Exercise on Graphing and Least Squares Fitting using a
Spreadsheet” on a flash drive or save it in your WLU account.

PT2: Given T and ∆T , give the equation for ∆
√
T . This was done in the

“Exercise on Linearizing Equations”.

∆
√
T =

PT3: From the linearization, give the equations for µ and ∆µ from the graph
of λ vs.

√
T . This was done in the “Exercise on Linearizing Equations”.

µ =

∆µ =

9.4.2 Investigation

In-lab Tasks

Part 1: Plotting the points
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The first step is to plot the points on a graph. The method for this should
be familiar after the “Exercise on Graphing and Least Squares Fitting using
a Spreadsheet”.

1. Load the spreadsheet from the lab page, and go to the appropriate tab.

2. Insert a graph in the box marked Graph 1 (non-linearized) on the page.

• Make sure it is an xy (scatter) graph.

• The x series should be C5 to C9.

• The y series should be E5 to E9.

3. Add both x and y error bars.

• Use series D5 to D9 for x error bars.

• Use series F5 to F9 for y error bars.

IT1: Demonstrate the graph as is.

Part 2: Linearizing the equation

The next step is to linearize the data in order to find a fit equation. The
method for this should be familiar after the “Exercise on Graphing and Least
Squares Fitting using a Spreadsheet”.

1. Replace the numbers with formulas in C14 to F14 in Table 2 for lin-
earized data. (The pre-lab task PT2 should help you with the formulas
for column D.) When they are correct, copy the formulas and paste spe-
cial in C15 to C18 to finish the table.

2. In Table 3 use the LINEST function to do a least squares fit using the
linearized data.

3. Insert a graph in the box marked Graph 2 (linearized)on the page.

• Make sure it is an xy (scatter) graph.

• The x series should be C14 to C18.

• The y series should be E14 to E18.
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4. Add error bars to the graph.

• Use series D14 to D18 for x error bars.

• Use series F14 to F18 for y error bars.

5. Select the data series, and choose a linear trendline.

IT2: Demonstrate the graph as is.

Part 3: Creating points on the curve

1. Put references to the appropriate LINEST results in D41, D42, F41,
and F42 according to the linearization equations.

2. Note that formulas are already filled in for D49 and D50, and a number
of steps for the curve plot has been chosen. Hint: In the linear fit, what
are x and y?

From the linearization, we have the equation

Y = mX + b

So if we replace X and Y with the correct quantities, we get

= m + b (9.1)

(Hint: You can get Y and X from PT3 .)

3. Replace the value in E56 with the formula using the results of the
linearization. Don’t forget the y-intercept.1 Note that the value for λ
is from the curve, not from the original data.

1Even when the y-intercept or the slope should be zero, use the actual value you get
from the linearization for plotting the curve. The curve represents the fit you got, not
necessarily the one you expected.
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4. Put a formula in C57 which can be copied to get a counter, if it hasn’t
been done already.

Now, by generating several values for T and using Equation 9.1, you
can generate a bunch of values which can be plotted on the original
graph. This is the only new step.

5. In D57, put the formula for calculating the next value of T ;

Ti = Tmin + i (Tmax − Tmin) /Nsteps

(Be sure to use absolute references as appropriate so that this formula
can be copied.)

6. Copy the formula in E57 and paste special in E58.

7. Copy the formulas in C57 to E57, and paste special in C58 to C70
to finish the table.

8. Add a series to your non-linear graph using the values from D56 to
E71 to show the curve produced by the fit.

9. Format the data series to get a line with no endpoints.

IT3: Demonstrate the graph as is.

Part 4: Refining the curve

1. Try changing the number of points for the curve, by changing the num-
ber of steps and deleting or adding rows in Table 4 as needed. (When
adding rows, you will need to copy formulas.)

IT4: Demonstrate graph with more points. Show how many are needed to
make it smooth.
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9.4.3 Analysis

Post-lab Questions

There are no post-lab requirements since next week final marks will be cal-
culated.

9.5 Recap

By the end of this exercise, you should understand:

• how a smooth curve can be plotted in a spreadsheet from any function

In addition, you should be able to:

• display any curve on a spreadsheet graph.

9.6 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 0 0
Post-lab Questions 0 0

Pre-lab Tasks 3 30
In-lab Tasks 4 70
Post-lab Tasks 0 0
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Derivation of the Least Squares
Fit

Following is a simple derivation of the least squares fit.
Suppose the relationship between the two experimental parameters being

studied is

y = f(x)

where x is the independent parameter which is varied, and y is the dependent
parameter. If f(x) is a polynomial function, or can be approximated by a
polynomial, then the least squares method is a linear one, and it will almost
always give reliable answers. If f(x) cannot be expressed as a polynomial, but
consists of transcendental functions, the least squares method is non-linear,
and may or may not work reliably. In some cases, a change of variables may
result in a polynomial, as in the exponential example above. A function like

y = a+
b

x
+

c

x2

is not a polynomial in x, but it is a polynomial in the variable z = 1/x.
Suppose the functional relationship between x and y is a polynomial of

degree `:

y = a0 + a1x+ a2x
2 . . . a`x

` (A.1)

or

y =
∑̀
j=0

ajx
j (A.2)
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130 Derivation of the Least Squares Fit

and we have a set of N data points xi, yi obtained by experiment. The goal
is to find the values of the ` + 1 parameters a0, a1 . . . a` which will give the
best fit of Equation A.1 to our data points. The first piece of information to
note is that

N ≥ `+ 1 (A.3)

or else we will not be able to make a unique determination. For example, if
` = 1, we need at least two data points to find the equation of the straight
line. In order to make any meaningful statistical statements, however, we
will need even more than ` + 1 points, as we shall see later. A good rule of
thumb: if we wish to fit our data with a polynomial of degree ` in a 95%
confidence interval, we should choose N such that

N − (`+ 1) ≥ 10 (A.4)

The idea behind the linear least squares method is to minimize the sum

S =
N∑
i=1

(
yi −

∑̀
j=0

ajx
j
i

)2

(A.5)

S will be a minimum if

∂S

∂ak
= 0 k = 0, 1, 2 . . . ` (A.6)

The result will be `+ 1 linear equations in `+ 1 unknowns:

∑̀
j=0

aj

(
N∑
i=1

xj+ki

)
=

N∑
i=1

xki yi k = 0, 1 . . . ` (A.7)

which can be solved by standard matrix techniques for the unknown coef-
ficients a0, a1 . . . a`. As an example, let us consider the case where ` = 1,
or

y = mx+ b

In this case,

S =
N∑
i=1

(yi − (mxi + b))2
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Expanding Equation A.7, we have

b(N) +m

(
N∑
i=1

xi

)
=
∑N

i=1 yi (A.8)

b

(
N∑
i=1

xi

)
+m

(
N∑
i=1

x2
i

)
=
∑N

i=1 xiyi (A.9)

Then the intercept b and the slope m can be found from Cramer’s rule

b =
(
∑
yi) (

∑
x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑
x2
i )− (

∑
xi)

2 (A.10)

and

m =
N (
∑
xiyi)− (

∑
xi) (

∑
yi)

N (
∑
x2
i )− (

∑
xi)

2 (A.11)

Winter 2016



132 Derivation of the Least Squares Fit

Winter 2016



Appendix B

Lab Checklist

This marking checklist will be used for lab reports this term. You need to
print one off and attach it to each lab report you hand in. Lab reports will
be marked as follows:

• Start with 90

For items not in italics

• Subtract 1 for each˜.

• Subtract 2 for each − .

For items in italics

• Subtract 3 for each˜.

• Subtract 6 for each − .

Note the importance of items in italics. These are very important in a report,
and so are weighted accordingly.
The other 10 marks will be based on how well the post-lab discussion ques-
tions were answered within the text of the report. Remember that the an-
swers to these questions should be an integral part of the report, not merely
an afterthought.
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Lab Format Checklist (V3.0g)

A. General

1. Your own work
2. Complete
3. Clear and appropriate “Purpose”
4. Flows
5. Did not require help on or after due date
6. Correct grammar
7. Correct spelling
8. Complete sentences where required
9. Legible
10. Professionally presented
11. Properly identified (e.g. name, partner)
12. On time
13. Checklist included
14. Template included
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B. Plagiarism Avoidance

1. Data only shared with partner(s)
2. Individual choice of sample data
3. Individual formatting
4. Individual structure of text

C. Data

1. Neat
2. Table column headings informative
3. Units given
4. Uncertainties given
5. Reasonable values
6. Reasonable uncertainties
7. Correct number of significant figures
8. Tables labeled (e.g. “Sample 1 Data”)
9. Tables given numbers (e.g. “Table #2”)

D. Calculations and Results

1. Any required derivations done correctly
2. Analysis explained where needed
3. Correct formulas used
4. Sample calculations shown where needed
5. All required values calculated
6. Uncertainties included
7. Units included
8. Correct number of significant figures
9. Appropriate use of standard form
10. Theoretical or reasonable value
11. Agreement of experiment with theory
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E. Linearizations

1. Independent (x) variable identified
2. Dependent (y) variable identified
3. Expected slope identified
4. Expected y-intercept identified

F. Graphs

1. Title meaningful
2. Correct graph type and orientation
3. Background colour and grid appropriate
4. Plotting data in table
5. Axis labels meaningful
6. Correct axis units
7. Points not connected
8. Error bars in both dimensions or note if

too small
9. Error bars correct size
10. Line of best fit shown without markers
11. Number given (e.g. “Graph #3”)

G. Least Squares Fits

1. Points used for fit clearly identified
2. Results given meaningful names
3. Correct units for slope and intercept
4. Correct indication of “large” or “small”

scatter
5. Reasonable points for maximum and min-

imum slopes if scatter “large”
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H. Error Discussion

1. Sources listed are significant
2. Sources are prioritized
3. Systematic error consequences
4. Evidence: i.e. test or bound
5. Reasonable suggestions for improvement

I. Conclusions

1. Relate to purpose
2. Major results stated
3. Comparisons made where appropriate
4. Agreement noted when found
5. % difference calculated only when no agree-

ment

J. References

1. Source(s) of constants listed
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Appendix C

Marking Scheme

PC132 Lab and Exercise Weighting Winter 2016 (Best adding to 100 will
count)

A. Required

1. MyLearningSpace Quizzes 10
2. Linearizing Equations 10
3. Graphing and Least Squares Fitting 20
4. Standing Waves on a String*1 10
5. Standing Waves on an Air Column*1 10
6. Curve Plotting 10
7. Standing Waves on a String report 30

B. Optional (Can replace other marks if higher)

1. Additional weight of lab report, if over 50
%

10

2. Additional weight of lab report, if over 80
%

10

3. Lab test 20
4. Standing Waves on an Air Column lab re-

port
20

1except post-lab questions, which will be in the report
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Review of Uncertainty
Calculations

D.1 Review of uncertainty rules

These are from the PC131 lab manual.

D.1.1 Repeated measurements

Arithmetic Mean (Average)

Note: In the following sections, each measurement xi can be assumed to have
an uncertainty pm, (i.e. the precision measure of the instrument used), due
to measurement uncertainty.

The arithmetic mean (or average) represents the best value obtainable
from a series of observations from “normally” distributed data.

Arithmetic mean = x =
∑n

i=1 xi
n

= x1+x2+···+xn
n
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Standard Deviation

The standard deviation of a number of measurements is a measurement
of the uncertainty in an experiment due to reproducibility. The standard
deviation is given by

Standard Deviation = σ =

√∑n
i=1(xi − x)2

n− 1

=
1√
n− 1

√√√√ n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

With random variations in the measurements, about 2/3 of the measure-
ments should fall within the region given by x ± σ, and about 95% of the
measurements should fall within the region given by x±2σ. (If this is not the
case, then either uncertainties were not random or not enough measurements
were taken to make this statistically valid.)

This occurs because the value calculated for x, called the sample mean,
may not be very close to the “actual” population mean, µ, which one
would get by taking an infinite number of measurements.

Rule of thumb: For normally distributed data, an order of magni-
tude approximation for the standard deviation is 1/4 the range of
the data. (In other words, take the difference between the maxi-
mum and minimum values and divide by 4 to get an approximate
value for the standard deviation.)
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Standard Deviation of the Mean

(In some texts this quantity is called the “standard error of the mean”.) It is
an interval around the calculated mean, x, in which the population mean, µ,
can be reasonably assumed to be found. This region is given by the standard
deviation of the mean,

Standard deviation of the mean = α =
σ√
n

and one can give the value of the measured quantity as x ± α. (In other
words, µ should fall within the range of x± α.)

Uncertainty in the average

The uncertainty in the average is the greater of the uncertainty of the in-
dividual measurements, (i.e. pm, the precision measure of the instrument
used), and α; i.e.

∆x = max (pm, α)

If possible, when doing an experiment, enough measurements of a quantity
should be taken so that the uncertainty in the measurement due to instru-
mental precision is greater than or equal to α. This is so that the random
variations in data values at some point become less significant than the in-
strument precision. (In practice this may require a number of data values
to be taken which is simply not reasonable, but sometimes this condition will
not be too difficult to achieve.)

In any case, the uncertainty used in subsequent calculations
should be the greater of the uncertainty of the individual mea-
surements and α.
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D.1.2 Rules for combining uncertainties

Basic arithmetic rules

The uncertainty in results can usually be calculated as in the following ex-
amples (if the percentage uncertainties in the data are small):

(a) ∆(A+B) = (∆A+ ∆B)

(b) ∆(A−B) = (∆A+ ∆B)

(c) ∆(A×B) ≈ |AB|
(∣∣∣∣∆AA

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣)

(d) ∆(
A

B
) ≈

∣∣∣∣AB
∣∣∣∣ (∣∣∣∣∆AA

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣)

Note that the first two rules above always hold true.

Uncertainties in functions, by algebra

∆f(x) ≈ |f ′(x)|∆x (D.1)

Uncertainties in functions, by inspection

∆f(x) ≈ fmax − f (D.2)

or
∆f(x) ≈ f − fmin (D.3)

Sensitivity of Total Uncertainty to Individual Uncertainties

If f = f(x, y), then to find the proportion of ∆f due to each of the individual
uncertainties, ∆x and ∆y, proceed as follows:

• To find ∆fx, let ∆y = 0 and calculate ∆f .

• To find ∆f y, let ∆x = 0 and calculate ∆f .
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D.1 Review of uncertainty rules 145

Uncertainties and Final Results

Always express final results with absolute uncertainties.

Mathematically, if two quantities a and b, with uncertainties ∆a
and ∆b are compared, they can be considered to agree within
their uncertainties if

|a− b| ≤ ∆a+ ∆b (D.4)

A value with no uncertainty given can be assumed to have an
uncertainty of zero.

If two numbers do not agree within experimental error, then the
percentage difference between the experimental and theoretical
values must be calculated as follows:

Percent Difference =

∣∣∣∣theoretical − experimentaltheoretical

∣∣∣∣× 100%

(D.5)

Remember: Only calculate the percent difference if your results
do not agree within experimental error.

Significant Figures in Final Results

Always quote final answers with one significant digit of uncertainty, and
round the answers so that the least significant digit quoted is the uncertain
one.
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D.2 Discussion of Uncertainties

• Spend most time discussing the factors which contribute most to un-
certainties in your results.

• Always give a measured value or a numerical bound on an uncertainty.

• State whether any particular factor leads to a systematic uncertainty
or a random one. If it’s systematic, indicate whether it would tend to
increase or decrease your result.

D.2.1 Types of Errors

• Measurable uncertainties

• Bounded uncertainties

• Blatant filler

Don’t use “human error”; it’s far too vague.

D.2.2 Reducing Errors

A. Avoid mistakes.

B. Repeat for consistency, if possible.

C. Change technique

D. Observe other factors as well; including ones which you may have as-
sumed were not changing or shouldn’t matter.

E. Repeat and do statistical analysis.

F. Change equipment; the last resort.

D.2.3 Ridiculous Errors

Anything which amounts to a mistake is not a valid source of error. A serious
scientist will attempt to ensure no mistakes were made before considering
reporting on results.
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Determining Graph Scatter

E.1 Introduction

You may have wondered if it’s possible to determine automatically whether a
linear graph has a “small” or a “large” scatter. Remember that the scatter is
considered “small” if a line can be drawn that crosses the error bars for each
data point. If no such line can be drawn, the scatter is considered “large”.
Consider a data point near the line of best fit. A point is considered “close”

y = mx+ b

(xi, yi)

Figure E.1: Data point near best fit line
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to the line if it passes within the box formed by the error bars for the point.

y = mx+ b

(xi, yi)

Figure E.2: Data point near best fit line with error “box”

Note that it’s possible that a line could cut through one corner of the box
without actually crossing one of the error bars.
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y = mx+ b

(xi, yi)

Figure E.3: Line inside “box” but missing error bars

Let’s take a closer look at a data point. For point i, the error bars form a
box with two diagonals.

∆xi

∆yi

Figure E.4: Data point close-up view

We can redraw the “error box” showing the diagonals.
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∆xi

∆yi slope is ∆yi
∆xi

slope is −∆yi
∆xi

Figure E.5: Diagonals from error bars

Now it should be clear that if a line passes through this box, even if it doesn’t
cross one of the error bars, then it must cross one of these diagonals with an
x value between xi + ∆xi and xi −∆xi.

y = mx+ b

(xi, yi)

Figure E.6: Test whether line passes within error bars
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The slope of the diagonal with the positive slope is

m+i =
∆yi
∆xi

(E.1)

The y-intercept of the diagonal with the positive slope is

b+i = yi −m+ixi (E.2)

since, by definition, (xi, yi) must be on the line. Similarly, The slope of the
diagonal with the negative slope is

m−i = −∆yi
∆xi

(E.3)

The y-intercept of the diagonal with the negative slope is

b−i = yi −m−ixi (E.4)

since, by definition, (xi, yi) must be on the line. For two lines y = m1x + b1

and y = m2x+b2, they cross when there is a single point (xc, yc) that satisfies
both equations. Thus

yc = m1xc + b1

and
yc = m2xc + b2

Combining this gives
m1xc + b1 = m2xc + b2

and so

xc =
b2 − b1

m1 −m2

(E.5)

To see where the best fit line y = mx+b crosses one of the diagonal lines,
we just use Equation E.5 and so

xci+ =
b− b+i

m+i −m
(E.6)

and

xci− =
b− b−i
m−i −m

(E.7)

If either of xci+ or xci− is between xi + ∆xi and xi − ∆xi then the best fit
line crosses the error bars for point i. If this is true for all of the data points,
then this is a case of small scatter.
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E.1.1 When this doesn’t work

This tests whether a given line crosses all of the error bars. So, if the least
squares fit line crosses all of the error bars, then this test is easy to use. It’s
possible, though, that the least squares fit line doesn’t cross all of the error
bars, but another line can be drawn which does. Unless we can determine
the equation of that line, we can’t apply this test.

Another case where this doesn’t work

If the x co-ordinate has no uncertainty, (i.e. there are only error bars in the
y direction), then this won’t work either. However, in that case, it easy to
apply a similar test to see if the line crosses all of the (vertical) error bars.
In this case, for each xi, it must be that

yi −∆yi ≤ mxi + b ≤ yi + ∆yi

or
|yi − (mxi + b)| ≤ ∆yi
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error bars, 75
graphs, 73
least squares fitting, 77

standard error in y-intercept, 29
standard error in slope, 29
standard error of the y-intercept

spreadsheet, 80
standard error of the slope

spreadsheet, 80
standard form, 11
standing waves, 108

uncertainties
discussion of, 141

uncertainties in linearized equations,
62

wavelength, 107
waves

compression, 107
longitudinal, 105
rarefaction, 107
standing, 108
transverse, 105
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