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Chapter 1

Lab Manual Layout

1.1 This is a Reference

Just as the theory you learn in courses will be required again in later courses,
the skills you learn in the lab will be required in later lab courses. Save this
manual as a reference: you will be expected to be able to do anything in it in
later lab courses. That is part of why the manual has been made to fit in a
binder; it can be combined with later manuals to form a reference library.

1.2 Parts of the Manual

The lab manual is divided mainly into four parts: background information,
lab exercises, experiments, and appendices.

New definitions are usually presented like this and words or phrases to
be highlighted are emphasized like this.

1.3 Lab Exercises and Experiment Descrip-

tions

Each experiment description is divided into several parts:

• Purpose

The specific objectives of the experiment are given. These may be in
terms of theories to be tested (see Theory below) or in terms of skills
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2 Lab Manual Layout

to be developed (see Introduction below).

• Introduction

This section should explain or mention new measuring techniques or
equipment to be used, data analysis methods to be incorporated, or
other skills to be developed in this experiment. Knowledge is cumula-
tive; what you learn in one lab you will be assumed to know and use
subsequently, in this course and beyond. As well, proficiency comes
with practice; the only way to become comfortable with a new skill is to
take every opportunity to use it. If you get someone else (such as your
lab partner) to do something which you don’t like doing, you will never
be able to do it better, and will get more intimidated by it as time goes
on.

• Theory

(Note: lab exercises and experiment descriptions will make slightly
different use of the “theory” section. In a lab exercise, “theory” will
refer to explanations and derivations of the techniques being taught.
In experiment descriptions, “theory” will refer to the physics behind
an experiment.)

A physical theory is often expressed as a mathematical relationship be-
tween measurable quantities. Testing a theory involves trying to deter-
mine whether such a mathematical relationship may exist. All mea-
surements have uncertainties associated with them, so we can only
say whether or not any difference between our results and those given
by the relationship (theory) can be accounted for by the known uncer-
tainties or not. (There may be other factors affecting the results which
were not accounted for.) We cannot conclude that a theory is “true”
or “false”, only whether our experiment “agrees” with or “supports”
it. Experimentation in general is an iterative process; one sets up
an experiment, performs it and takes measurements, analyzes the re-
sults, refines the experiment, and the process repeats. No experiment
is ever “perfect”, although it may at some point be “good enough”,
meaning that it demonstrates what was required within experimental
uncertainty. The theory section for an experiment should give any
mathematical relationship(s) pertinent to that experiment, along with
any definitions, etc. which may be needed. You don’t have to under-
stand a theory in depth to test it; inasmuch as it is a mathematical
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relationship between measurable quantities, all you need to understand
is how to measure the quantities in question and how they are related.
This is why whether or not you understand the theory is irrelevant in
the lab. (In fact, you may at times find the experiment helps you un-
derstand the theory, whether you do the lab before or after you cover
the material in class.)

Consider the example of Table 1.1

qwertys poiuyts

1 1
2 3
3 5

Table 1.1: Relationship between qwertys and poiuyts

If you were asked, “Does p = q2 ?”, you would say no. It is no different
to be asked “Is the following theorem correct?”

Lab Practice 1 In a first year physics laboratory, poiuyts always vary
as the square of qwertys.

As long as you can measure qwertys and poiuyts (or can calculate them
from other things you can measure), then you can answer the question,
even without knowing why there should be such a relationship.

Sometimes there is a disadvantage to knowing too much about what to
expect. It is easy to overlook unexpected data because it is not “right”;
(meaning it doesn’t give you the result you expected.)

The data are always right!

If your data1 are giving you a result you don’t like, that is a message
that either you have made a mistake or there is more going on than
you have accounted for.

1Datum is the singular term. Data is the plural term.

Fall 2016



4 Lab Manual Layout

• Procedure

This tells you what you are required to do to perform the experiment.
Unless you are told otherwise, these instructions are to be followed
precisely. If there are any changes necessary, you will be informed in
the lab.

Questions will need to be handed in; tasks will be checked off in the
lab.

Included in this section are three important subsections:

– Preparation (including pre-lab questions and tasks)

The amount of time spent in a lab can vary greatly depending
on what has been done ahead of time. This section attempts to
minimize wasted time in the lab .

– Experimentation or Investigation

(including in-lab questions and tasks)

For some lab exercises, there won’t be an “experiment” as such,
but there will be things to be done in the lab. The in-lab ques-
tions can usually only be answered while you have access to the lab
equipment, but the answers will be important for further calcula-
tions and interpretation. For computer labs, instead of questions
there will often be tasks, consisting of points to be demonstrated
while you are in the lab.

– Analysis (usually for labs) or Follow-up (usually for exercises)

(including post-lab questions and tasks)

Many of the calculations for a lab can be done afterward, provided
you understand clearly what you are doing in the lab, record all
of the necessary data, and answer all of the in-lab questions. The
post-lab questions summarize the important points which must be
addressed in the lab report.

Since most of the exercises are developing skills, the results can
usually be applied immediately to labs either already begun or
upcoming.
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• Bonus

Most experiments will have a bonus question allowing you to take on
further challenges to develop more understanding, either of data analy-
sis concepts or of the underlying theory. (Bonus questions will usually
be worth an extra 5% or so on the lab if they are done correctly.)

1.4 Templates

Each experiment, and many exercises, include a template. This is to help
you ensure that you are not missing any data when you leave the lab. Since
you will perform many calculations outside the lab, you’ll need to make sure
you have everything you need before you leave.

1.4.1 Table format in templates and lab reports

The templates are set up to help you consistently record information. For
that reason, the tables are very “generic”. It would be more concise to create
tables that are specific to each experiment, but that would not be as helpful
for your education. When you write a report, you should set up tables which
are concise and experiment-specific, even if they look different than the ones
in the template.

Don’t automatically set up tables in your lab reports like the ones
in the templates.

1.4.2 Template tables

• The first table contains information which you should record every time
you do an experiment, and looks like this:

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:
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1.4.3 Before the lab

• Read through the lab, and find (or create) symbols for each of the
quantities in the experiment, and fill in Table 1.2.

quantity symbol single/
given/ repeated/
mine constant

Not in equations

Table 1.2: List of quantities

• For any quantities to be calculated, fill in the equations in Table 1.3.

quantity symbol equation uncertainty

acceleration due
to gravity

Table 1.3: Calculated quantities

• For any constants to be used, either in calculations or to be compared
with results, look up values and fill in Table 1.4.

1.4.4 In the lab

• For any measuring instruments, fill in the information in the appropri-
ate tables.
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symbol value units instrument effective
name precision zero uncertainty

measure error

Not in equations

Table 1.4: Single value quantities

• For any quantity measured only once, fill in Table 1.4. There may be
quantities which you do not need in your calculations, but which you
would like to record for completeness. For that purpose there is a section
in the table under the heading Not in equations.

• If there is an effective uncertainty for the quantity in Table 1.4, then
give specific information in Table 1.5. Always include at least one source
of systematic error, even if the bound you give is small enough to make
it insignificant. This is so that you can show you understand how it
would affect the results if it were big enough.

• Sometimes there may be several parts to an experiment, in which case
it may help to keep things straight by separating them in the table, as
in Table 1.5.

• For repeated measurements, there will be experiment-specific tables,
such as Table 1.6.

• For any quantity where measurement is repeated, fill in Table 1.6. In
this case, there is no place for an effective uncertainty, since that will
be determined by statistical analysis.

1.4.5 Spreadsheet Templates

For some labs and exercises, there will be spreadsheets set up to poten-
tially help you do your calculations. For experiment-specific tables, you
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symbol factor bound units

For Part 1

Sources of systematic error

Sources of random error

For Part 2

Sources of systematic error

Sources of random error

Table 1.5: Experimental factors responsible for effective uncertainties

may choose to print and bring the spreadsheet template instead. This
will make the most sense if you are going to use the spreadsheet to do
your calculations.

Even when there is a spreadsheet, there will still be information in the
lab to record in the manual template, which does not have corresponding
sections in the spreadsheet.
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1.5 Steps in processing lab data 9

Instrument
reference
(or name)

units

precision
measure

zero
error

Trial # Angle

1
2
3
4
5

Table 1.6: Example of experiment-specific table

• Figure 1.1 is an example of how the corresponding experiment-specific
table might look in the spreadsheet. The extra cells at the bottom are
for calculation results.

1.5 Steps in processing lab data

Any experiment involves a similar process, regardless of the details.

1. Collect data.

• Record measurements.

2. Transform data.

• Often the quantities measured are not the desired ones for calcu-
lations.. For instance, mass is measured but force is required.

3. Combine data.

• Calculate mean, standard deviation, standard deviation of the
mean, uncertainty in the mean
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Figure 1.1: Example of spreadsheet table

4. Interpret data.

• Use combined data (mean and its uncertainty) to test general
principle or determine global parameter(s).

Often additional calculations must be performed on the combined data before
general interpretations can be made, but I have included that as part of the
“interpretation” process.
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Chapter 2

Goals for PC131 Labs

If you’re going to be a cook, you have to read some cookbooks, but eventually
you need to get into the kitchen and cook.

If you’re going to be an artist, you can study art and go to galleries, but
eventually you’re going to need to go into a studio.

If you’re going to become a programmer, you can read about computers,
study operating systems and programming languages, but eventually you
have to sit down and program.

If you’re going to become a scientist, you can read about science, go to
lectures and watch videos about science, but eventually you need to go into
a lab and do some research.

In the lecture part of this course, you’ll learn a lot of physics. But it’s only
in the lab that you can learn about how to do research, which is ultimately
what science is all about.

The labs and exercises in this course are to teach you about how to collect,
analyze, and interpret data, and how to report your results so that they can
be useful to other researchers.

The labs and exercises are chosen to teach research principles, rather than
to illustrate specific physics concepts. This means, (among other things), that
the “theory” behind any particular lab may not be covered in great detail in
class. What you need will be covered briefly in the lab (or the manual).
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Instructions for PC131 Labs

Students will be divided into sections, each of which will be supervised by a
lab supervisor and a demonstrator. This lab supervisor should be informed
of any reason for absence, such as illness, as soon as possible. (If the student
knows of a potential absence in advance, then the lab supervisor should be
informed in advance.) A student should provide a doctor’s certificate for
absence due to illness. Missed labs will normally have to be made up, and
usually this will be scheduled as soon as possible after the lab which was
missed while the equipment is still set up for the experiment in question.

It is up to the student to read over any theory for each experiment and
understand the procedures and do any required preparation before the labora-
tory session begins. This may at times require more time outside the lab than
the time spent in the lab.

Students are normally expected to complete all the experiments assigned
to them, and to submit a written report of your experimental work, including
raw data, as required.

You will be informed by the lab instructor of the location for submission
of your reports during your first laboratory period. This report will usually
be graded and returned to you by the next session. The demonstrator who
marked a particular lab will be identified, and any questions about marking
should first be directed to that demonstrator. Such questions must be directed
to the marker within one week of the lab being returned to the student if any
additional marks are requested.

Unless otherwise stated, all labs and exercises will count toward your lab
mark, although they may not all carry equal weight. If you have questions
about this talk to the lab supervisor.
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14 Instructions for PC131 Labs

3.1 Expectations

As a student in university, there are certain things expected of you. Some of
them are as follows:

• You are expected to come to the lab prepared. This means first of all
that you will ensure that you have all of the information you need to
do the labs, including answers to the pre-lab questions. After you have
been told what lab you will be doing, you should read it ahead and
be clear on what it requires. You should bring the lab manual, lecture
notes, etc. with you to every lab. (Of course you will be on time so
you do not miss important information and instructions.)

• You are expected to be organized This includes recording raw data with
sufficient information so that you can understand it, keeping proper
backups of data, reports, etc., hanging on to previous reports, and so
on. It also means starting work early so there is enough time to clarify
points, write up your report and hand it in on time.

• You are expected to be adaptable and use common sense. In labs it
is often necessary to change certain details (eg. component values or
procedures) at lab time from what is written in the manual. You should
be alert to changes, and think rationally about those changes and react
accordingly.

• You are expected to value the time of instructors and lab demonstrators.
This means that you make use of the lab time when it is scheduled,
and try to make it as productive as possible. This means NOT arriving
late or leaving early and then seeking help at other times for what you
missed.

• You are expected to act on feedback from instructors, markers, etc. If
you get something wrong, find out how to do it right and do so.

• You are expected to use all of the resources at your disposal. This in-
cludes everything in the lab manual, textbooks for other related courses,
the library, etc.

• You are expected to collect your own data. This means that you per-
form experiments with your partner and no one else. If, due to an
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emergency, you are forced to use someone else’s data, you must explain
why you did so and explain whose data you used. Otherwise, you are
committing plagiarism.

• You are expected to do your own work. This means that you prepare
your reports with no one else. If you ask someone else for advice about
something in the lab, make sure that anything you write down is based
on your own understanding. If you are basically regurgitating someone
else’s ideas, even in your own words, you are committing plagiarism.
(See the next point.)

• You are expected to understand your own report. If you discuss ideas
with other people, even your partner, do not use those ideas in your
report unless you have adopted them yourself. You are responsible for
all of the information in your report.

• You are expected to be professional about your work. This means
meeting deadlines, understanding and meeting requirements for labs,
reports, etc. This means doing what should be done, rather than what
you think you can get away with. This means proofreading reports for
spelling, grammar, etc. before handing them in.

• You are expected to actively participate in your own education. This
means that in the lab, you do not leave tasks to your partner because
you do not understand them. This means that you try and learn how
and why to do something, rather than merely finding out the result of
doing something.

3.2 Workload

Even though the labs are each only worth part of your course mark, the
amount of work involved is probably disproportionately higher than for as-
signments, etc. Since most of the “hands-on” portion of your education will
occur in the labs, this should not be surprising. (Note: skipping lectures or
labs to study for tests is a very bad idea. Good time management is a much
better idea.)
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3.3 Administration

1. Students will be required to have a binder to contain all lab manual
sections and all lab reports which have been returned. (A 3 hole punch
will be in the lab.)

2. Templates will be used in each experiment as follows:

(a) The template must be checked and initialed by the demonstrator
before students leave the lab.

(b) No more than 3 people can use one set of data. If equipment is
tight groups will have to split up. (i.e. Only as many people as fit
the designated places for names on a template may use the same
data.)

(c) Part of the lab mark will be for the template.

(d) The template must be included with lab handed in. penalty will be
incurred if it is missing.) It must be the original, not a photocopy.

(e) If a student misses a lab, and if space permits (decided by the
lab supervisor) the student may do the lab in another section the
same week without penalty. (However the due date is still for the
student’s own section.) In that case the section recorded on the
template should be where the experiment was done, not where the
student normally belongs.

3. In-lab tasks must be checked off before the end of the lab, and answers
to in-lab questions must be handed in at the end of the lab. Students are
to make notes about question answers and keep them in their binders
so that the points raised can be discussed in their reports. Marks for
answers to questions will be added to marks for the lab. For people
who have missed the lab without a doctor’s note and have not made up
the lab, these marks will be forfeit. The points raised in the answers
will still be expected to be addressed in the lab report.

4. Labs handed in after the due date incur a late penalty according to the
lateness of the submission. After the reports for an experiment have
been returned, any late reports submitted for that experiment cannot
receive a grade higher than the lowest mark from that lab section for
the reports which were submitted on time.
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No labs will be accepted after the last day of classes.

3.4 Plagiarism

5. Plagiarism includes the following:

• Identical or nearly identical wording in any block of text.

• Identical formatting of lists, calculations, derivations, etc. which
suggests a file was copied.

6. You will get one warning the first time plagiarism is suspected. After
this any suspected plagiarism will be forwarded directly to the course
instructor. With the warning you will get a zero on the relevant sec-
tion(s) of the lab report. If you wish to appeal this, you will have to
discuss it with the lab supervisor and the course instructor.

7. If there is a suspected case of plagiarism involving a lab report of yours,
it does not matter whether yours is the original or the copy. The
sanctions are the same.

3.5 Calculation of marks

8. The precise weightings of labs, exercises, and anything else will be
discussed later in the lab manual.

9. The weighting of individual labs and exercises may depend on the qual-
ity of the work; i.e. if you do better work on some things they will count
more toward your final grade. Details will be discussed in the lab.

10. There may be a lab test at the end of term.
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How To Prepare for a Lab

“The theory section for an experiment should give any math-
ematical relationship(s) pertinent to that experiment, along with
any definitions, etc. which may be needed. You don’t have to
understand a theory in depth to test it; inasmuch as it is a math-
ematical relationship between measurable quantities all you need
to understand is how to measure the quantities in question and
how they are related. This is why whether or not you understand
the theory is irrelevant in the lab. (In fact, you may at times find
the experiment helps you understand the theory, whether you do
the lab before or after you cover the material in class.)”

1. Check the web page after noon on the Friday before the lab to make
sure of what you need to bring, hand in, etc. (It is a good idea to check
the web page the day of your lab, in case there are any last minute
corrections to the instructions.)

2. Read over the lab write–up to determine what the physics is behind
it. (Even without understanding the physics in detail, you can do all
of the following steps.)

3. Answer all of the pre-lab questions and bring the answers with you to
the lab.

4. Complete all of the pre-lab tasks and bring anything that needs to be
checked off with you to the lab.
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20 How To Prepare for a Lab

5. Examine the spreadsheet and/or template for the lab (if either of them
exists) to be sure that you understand what all of the quantities, sym-
bols, etc. mean. (If there is a spreadsheet, you can prepare any or all
of the formulas before the lab to simplify analysis later.)

6. Enter any constants into the appropriate table(s) in the template.

7. Highlight all of the in-lab questions and tasks so you can be sure to
answer them all in the lab.

8. Check the web page the day of the lab in case there are any last minute
changes or corrections to previous instructions.

9. Arrive on time, prepared. Bring all previous labs, calculator, and any-
thing else which might be of use. (If the theory is in your textbook,
maybe it would be good to bring your textbook to the lab!)
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Plagiarism

5.1 Plagiarism vs. Copyright Violation

These two concepts are related, but may get confused. Both involve unethical
re-use of one person’s work by another person, but they are different because
the victim is different in each case.

Copyright is the right of an author to control over the publication or
distribution of his or her own work. A violation of copyright is, in effect, a
crime against the producer of the work, since adequate credit and/or payment
is not given.

Plagiarism is the presentation of someone else’s work as one’s own, and
thus the crime is against the reader or recipient of the work who is being
deceived about its source.

Putting these two together suggests that there is a great deal of overlap,
since trying to pass off someone else’s work without that person’s permis-
sion as one’s own is both plagiarism and a violation of copyright. However,
copying someone else’s work without permission, even while admitting who
produced it, is still a violation of copyright. Conversely, presenting someone
else’s work as your own, even with that person’s permission,is still plagiarism.

5.2 Plagiarism Within the University

The Wilfrid Laurier University calendar says: “ plagiarism . . . is the unac-
knowledged presentation, in whole or in part, of the work of others as one’s
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own, whether in written, oral or other form, in an examination, report, as-
signment, thesis or dissertation ”

A search of the university web site for the word “plagiarism” turns up
several things, among them the following:

• “Of course, under no circumstance is it acceptable to directly use an
author’s words (or a variation with only a few words of a sentence
changed) without giving that author credit; this is plagiarism!!!” (Psy-
chology 229)

• “plagiarism, which includes but is not limited to: the unacknowledged
presentation, in whole or in part, of the work of others as one’s own;
the failure to acknowledge the substantive contributions of academic
colleagues, including students, or others; the use of unpublished mate-
rial of other researchers or authors, including students or staff, without
their permission;” (Faculty Association Collective Agreement)

• “DO NOT COPY DOWN A SECTION FROM YOUR SOURCE VER-
BATIM OR WITH VERY MINOR CHANGES. This is PLAGIARISM
and can lead to severe penalties. Obviously,no instructor can catch all
offenders but, to paraphrase the great Clint Eastwood, “What you need
to ask yourself is ‘Do I feel lucky today?’ ” (Contemporary Studies
100 Notes on Quotes)

• “Some people seem to think that if they use someone else’s work, but
make slight changes in wording, then all they need to do is make ref-
erence to the “other” work in the standard way, i.e., (Smith, 1985),
and there is no plagiarism involved. This is not true. You must ei-
ther use direct quotes (with full references, including page numbers)
or completely rephrase things in your own words (and even here you
must fully reference the original source of the idea(s)).” (Psychology
306, quote from Making sense in psychology and the life sciences: A
student’s guide to writing and style , by Margot Northey and Brian
Timney (Toronto: Oxford University Press, 1986, pp. 32-33).)

• “Any student who has been caught submitting material that is not
properly referenced, where appropriate, or submits material that is
copied from another source (either a text or another student’s lab),
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will be subject to the penalties outlined in the Student Calendar.”
(Geography 100)

• “Paraphrasing means restating a passage of a text in your own words,
that is, rewording the ideas of someone else. In such a case, proper
reference to the author must be given, or it is plagiarism. Copying a
passage verbatim (not paraphrased) also constitutes plagiarism if it is
not placed in quotes and is not referenced. Plagiarism is the appro-
priation or imitation of the language, ideas, and thoughts of another
author, and the representation of these as one’s own.” (Biology 100)

5.3 How to Avoid Plagiarism

Plagiarism is a serious offense, and will be treated that way, but often stu-
dents are unclear about what it is. The above quotes should help, but here
are some more guidelines:

• If you use the same data as anyone else, this should be clearly doc-
umented in your report, WHETHER THE DATA ARE YOURS OR
THEIRS.

• Use different data values than the ones used by your partner for your
sample calculations.

• If you copy any file, even if you modify it, it is plagiarism unless you
clearly document it. (This does not mean you can copy whatever you
like as long as it’s documented; you still are expected to do your own
work. However at least you’re not plagiarizing if you document your
sources properly.)

• You are responsible for anything in your report; if you answer a question
about your report with, “I don’t know, my partner did that part”, you
are guilty of plagiarism, because you are passing off your partner’s work
as your own.

• The purpose for working together is to help each other learn. If collab-
oration is done in order for one or more people to avoid having to learn
and/or work, then it is very likely going to involve plagiarism, (and is
a no-no for pedagogical reasons anyway.)
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• If you give your data, files, etc. to anyone else and they plagiarize
it you are in trouble as well, because you are aiding their attempt to
cheat. Do not give out data, files, or anything else without express
permission from the lab supervisor. This includes giving others your
work to “look at”; if you give it to them, for whatever reason, and they
copy it, you have a problem.

• If you want to talk over ideas with others, do not write while you are
discussing; if everyone is on their own when they write up their reports,
then the group discussion should not be a problem. However, as in a
previous point, do not use group consensus as justification for what you
write; discussion with anyone else should be to help you sort out your
thoughts, not to get the “right answers” for you to parrot.

Look at the document from the writing centre, “How to Use Sources and
Avoid Plagiarism”.
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Lab Reports

A lab report is personal, in the sense that it explains what you did in the lab
and summarizes your results, as opposed to an assignment which generally
answers a question of some sort. On an assignment, there is (usually) a “right
answer”, and finding it is the main part of the exercise. In a lab report, rather
than determining an “answer”, you may be asked to test something. (Note
that no experiment can ever prove anything; it can only provide evidence for
or against; just like in mathematics finding a single case in which a theorem
holds true does not prove it, although a single case in which it does not hold
refutes the theorem. A law in physics is simply a theorem which has been
tested countless times without evidence of a case in which it does not hold.)
The point of the lab report, when testing a theorem or law, is to explain
whether or not you were successful, and to give reasons why or why not. In
the case where you are to produce an “answer”, (such as a value for g), your
answer is likely to be different from that of anyone else; your job is to describe
how you arrived at yours and why it is reasonable under the circumstances.

6.1 Format of a Lab Report

The format of the report should be as follows:

6.1.1 Title

The title should be more specific than what is given in the manual; it should
reflect some specifics of the experiment.
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6.1.2 Purpose

The specific purpose of the experiment should be briefly stated. (Note that
this is not the same as the goals of the whole set of labs; while the labs as a
group are to teach data analysis techniques, etc., the specific purpose of one
experiment may indeed be to determine a value for g, for instance.) Usually,
the purpose of each experiment will be given in the lab manual. However, it
will be very general. As in the title, you should try and be a bit more specific.

There should always be both qualitative and quantitative goals for a
lab.

Qualitative

This would include things like “see if the effects of friction can be observed”.
In order to achieve this, however, specific quantitative analyses will need to
be performed.

Quantitative

In a scientific experiment, there will always be numerical results produced
which are compared with each other or to other values. It is based on the
results of these comparisons that the qualitative interpretations will be made.

6.1.3 Introduction

In general, in this course, you will not have to write an Introduction section.

An introduction contains two things: theory for the experiment and ra-
tionale for the experiment.

Theory

Background and theoretical details should go here. Normally, detailed deriva-
tions of mathematical relationships should not be included, but references
must be listed. All statements, equations, and ‘accepted’ values must be jus-
tified by either specifying the reference(s) or by derivation if the equation(s)
cannot be found in a reference.
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Rationale

This describes why the experiment is being done, which may include refer-
ences to previous research, or a discussion of why the results are important
in a broader context.

6.1.4 Procedure

The procedure used should not be described unless you deviate from that
outlined in the manual, or unless some procedural problem occurred, which
must be mentioned. A reference to the appropriate chapter(s) of the lab
manual is sufficient most of the time.

Ideally, someone reading your report and having access to the lab manual
should be able to reproduce your results, within reasonable limits. (Later on
we will discuss what “reasonable limits” are.) If you have made a mistake in
doing the experiment, then your report should make it possible for someone
else to do the experiment without making the same mistake. For this reason,
lab reports are required to contain raw data, (which will be discussed later),
and explanatory notes.

Explanatory notes are recorded to

• explain any changes to the procedure from that recorded in the lab
manual,

• draw attention to measurements of parameters, values of constants, etc.
used in calculations, and

• clarify any points about what was done which may otherwise be am-
biguous.

Although the procedure need not be included, your report should be clear
enough that the reader does not need the manual to understand your write–
up.

(If you actually need to describe completely how the experiment was done,
then it would be better to call it a “Methods” section, to be consistent with
scientific papers.)

6.1.5 Experimental Results

There are two main components to this section; raw data and calculations.
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Raw Data

In this part, the reporting should be done part by part with the numbering
and titling of the parts arranged in the same order as they appear in the
manual.

The raw data are provided so that someone can work from the actual
numbers you wrote down originally before doing calculations. Often mistakes
in calculation can be recognized and corrected after the fact by looking at
the raw data.

In this section:

• Measurements and the names and precision measures of all instruments
used should be recorded; in tabular form where applicable.

• If the realistic uncertainty in any quantity is bigger than the precision
measure of the instrument involved, then the cause of the uncertainty
and a bound on its value should be given.

• Comments, implicitly or explicitly asked for regarding data, or exper-
imental factors should be noted here. This will include the answering
of any given in-lab questions.

Calculations

There should be a clear path for a reader from raw data to the final results
presented in a lab report. In this section of the report:

• Data which is modified from the original should be recorded here; in
tabular form where applicable.

• Uncertainties should be calculated for all results, unless otherwise spec-
ified. The measurement uncertainties used in the calculations should
be those listed as realistic in the raw data section.

• Calculations of quantities and comparisons with known relationships
should be given. If, however, the calculations are repetitive, only one
sample calculation, shown in detail, need be given. Error analysis
should appear here as well.
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• Any required graphs would appear in this part. (More instruction
about how graphs should be presented will be given later.)

• For any graph, a table should be given which has columns for the data
(including uncertainties) which are actually plotted on the graph.

• Comments, implicitly or explicitly asked for regarding calculations, ob-
servations or graphs, should be made here.

Sample calculations may be required in a particular order or not. If
the order is not specified, it makes sense to do them in the order in which
the calculations would be done in the experiment. If the same data can be
carried through the whole set of calculations, that would be a good choice to
illustrate what is happening.

Printing out a spreadsheet with formulas shown does not count as
showing your calculations; the reader does not have to be familiar
with spreadsheet syntax to make sense of results.

Post-lab questions should not be answered in a numbered list;
rather the answers should be integrated in to the Discussion and
Conclusion sections based on where they would be most appro-
priate.

6.1.6 Discussion

This section is where you explain the significance of what you have deter-
mined and outline the reasonable limits which you place on your results.
(This is what separates a scientific report from an advertisement.) It should
outline the major sources of random and systematic error in an experiment.
Your emphasis should be on those which are most significant, and on which
you can easily place a numerical value. Wherever possible, you should try
to suggest evidence as to why these may have affected your results, and in-
clude recommendations for how their effects may be minimized. This can be
accompanied by suggested improvements to the experiment.

Two extremes in tone of the discussion should be avoided: the first is
the “sales pitch” or advertisement mentioned above, and the other is the
“apology” or disclaimer (“ I wouldn’t trust these results if I were you; they’re
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probably hogwash.”) Avoid whining about the equipment, the time, etc. Your
job is to explain briefly what factors most influenced your results, not to ab-
solve yourself of responsibility for what you got, but to suggest changes or
improvements for someone attempting the same experiment in the future.
Emphasis should be placed on improving the experiment by changed tech-
nique, (which may be somewhat under your control), rather than by changed
equipment, (which may not).

M any of the in-lab questions are directed to things which ought
to be discussed here. Like the post-lab questions, don’t answer
them in a list, but integrate them into the text.

This section is usually worth a large part of the mark for a lab so be
prepared to spend enough time thinking to do a reasonable job of it.

You must discuss at least one source of systematic error in your
report, even if you reject it as insignificant, in order to indicate
how it would affect the results.

6.1.7 Conclusions

Just as there are always both qualitative and quantitative goals for a lab,
there should always be both qualitative and quantitative conclusions from
a lab.

Qualitative

This would include things like “see if the effects of friction can be observed”.
In order to achieve this, however, specific quantitative analyses will need to
be performed.

Quantitative

In a scientific experiment, there will always be numerical results produced
which are compared with each other or to other values. It is based on the
results of these comparisons that the qualitative interpretations will be made.

General comments regarding the nature of results and the validity of rela-
tionships used would be given in this section. Keep in mind that these com-
ments can be made with certainty based on the results of error calculations.
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The results of the different exercises should be commented on individually.
Your conclusions should refer to your original purpose; eg. if you set out to
determine a value for g then your conclusions should include your calculated
value of g and a comparison of your value with what you would expect.

While you may not have as much to say in this section, what you say
should be clear and concise.

6.1.8 References

If an ‘accepted’ value is used in your report, then the value should be foot-
noted and the reference given in standard form. Any references used for the
theory should be listed here as well.

6.2 Final Remarks

Reports should be clear, concise, and easy to read. Messy, unorganized
papers never fail to insult the reader (normally the marker) and your grade
will reflect this. A professional report, in quality and detail, is at least as
important as careful experimental technique and analysis.

Lab reports should usually be typed so that everything is neat and or-
ganized. Be sure to spell check and watch for mistakes due to using words
which are correctly spelled but inappropriate.

6.3 Note on Lab Exercises

Lab exercises are different than lab reports, and so the format of the write-
up is different. Generally exercises will be shorter, and they will not include
either a Discussion or a Conclusion section.

Computer lab exercises may require little or even no report, but will have
points which must be demonstrated in the lab.
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Chapter 7

Measurement and Uncertainties

If it’s green and wiggles, it’s biology;
If it stinks, it’s chemistry;
If it doesn’t work, it’s physics.1

The quote above is rather cynical, but depending on what is meant by
“work”, there may be some truth to it. In physics most of the numbers
used are not exact but only approximate. These approximate numbers arise
from two principal sources:

1. uncertainties in individual measurements

2. reproducibility of successive measurements of the same quantities.

The first of these cases will be discussed in the following section, while the
second will be discussed somewhat here, and more later.

7.1 Errors and Uncertainties

When an experiment is performed, every effort is made to ensure that what is
being measured is what is supposed to be measured. Factors which hinder this
are called experimental errors, and the existence of these factors results
in uncertainty in quantities measured.

1The Physics Teacher 11, 191 (1973)
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7.2 Single Measurement Uncertainties

When a number is obtained as a measure of length, area, angle, or other
quantity, its reliability depends on the precision2 of the instrument used,
the repeatability of the measurement, the care taken by the experimenter,
and on the subjectivity of the measurement itself.

7.2.1 Expressing Quantities with Uncertainties

Consider a measured length that is found to be between 14.255 cm and
14.265 cm. A number like this should be recorded as 14.260± 0.005 cm,
where the 0.005 cm is the uncertainty 3 in the length.

Note: Digits which are not stated are definitely uncertain. They are, in
fact, unknown, and you can’t get any more uncertain than that! For instance,
it makes no sense to quote a value of 78.3±0.0003kg. Unless the next three
digits after the decimal place are known to be zeroes, then the uncertainty
due to those unknown digits is much bigger than 0.0003kg. If we actually
measured a value of 78.3000kg, then those zeroes should be stated, otherwise
our uncertainty is meaningless. (More will be said about significant figures
later.)

Remember: The uncertainty in a measurement should always be
in the last digit quoted; i.e. the least significant digit recorded is
the uncertain one.

7.2.2 Random and Systematic Errors

There are two main categories for errors, (i.e. sources of uncertainty), which
can occur: systematic and random.

• Systematic errors are those which, if present, will skew the results in
a particular direction, and possibly by a relatively consistent amount.
For instance, If we need to calculate the volume of the inside of a tube,
and we measure the outer dimensions of the tube, then the volume we

2This term will be discussed in detail later.
3The term error is also used for uncertainty, but it suggests the idea of mistakes, and

so it will be avoided where possible, except to describe the experimental factors which
lead to the uncertainty.
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calculate will be a little higher than it should be. If we repeated the
measurement a few times, we might get slightly different results, but
they would all be high.

• Random errors, on the other hand, cannot be consistently predicted, in
direction or size, outside of perhaps broad limits. For example, if you
are trying to measure the average diameter of a sample of ball bearings,
then if they are randomly chosen there is no reason to assume that the
first one measured will be either above average or below.

One of the important differences between random and systematic errors
is that systematic errors can be corrected for after the fact, if they can be
bounded. (If we measured the thickness of the walls of the tube from the
example above, we could use this to correct the volume.) Random errors can
only be reduced by repeating the number of measurements. (This will be
discussed later.)

It should be noted that a particular measurement may combine both
types of errors; if the two above examples are combined, so that one is trying
to determine the average inner volume of a bunch of tubes by measuring
the outer dimensions, then there would be a systematic error, (due to the
difference between inner and outer dimensions), and a random error, (due to
the variation between the tubes), which would both affect the results.

7.2.3 Recording Precision with a Measurement

When taking measurements, one can usually estimate a reading to the nearest
1/2 of the smallest division marked on the scale. This quantity is known as
the precision measure of the instrument. For a digital device, you can
measure to the least significant digit.

So, for example, if a metre stick has markings every millimetre, then the
precision measure is 0.5 mm, and all measurements should be to 10ths of
millimetres. On the other hand, if a digital stopwatch measures to 1/100th
of a second, the precision measure is 0.01s and measurements should be to
hundredths of seconds.

Determine the precision measure of an instrument before taking
any measurements, not after. Since the number of digits you
quote will depend on the precision measure, you cannot make
them up after the fact, or assume them to be zero.
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7.2.4 Realistic Uncertainties

Sometimes the precision you can actually achieve in a measurement is less
than what is theoretically possible. In other words, your uncertainty is not
determined by the precision measure of the instrument, but is somewhat
larger because of other factors.

The size of the uncertainty you quote should reflect the real range
of possible values for the quantity measured. You should be pre-
pared to defend any measurement within the uncertainty you give
for it, so do not blithely quote the precision measure of the in-
strument as the uncertainty unless you are convinced that it is
appropriate. The precision measure is the best that you can do
with an instrument; the uncertainty you quote should be what
you can realistically do. Your goal as you do the experiment is to
try and reduce other factors as much as possible so that you can
get as close to the precision measure as possible.

There are many possible sources for the uncertainty in a single quan-
tity which all contribute to the total uncertainty. The magnitude of each
uncertainty contribution can vary, and the uncertainty you quote with the
measurement should take all of the sources into account and be realistic. For
instance, suppose you measure the length of a table with a metre stick. The
uncertainty in the length will come from several sources, including:

• the precision measure of the metre stick

• the unevenness of the ends of the table

• the unevenness of the top of the table (or the side, if you place the
metre stick alongside the table to measure)

• the temperature of the room (a metal metre stick will expand or con-
tract)

• the humidity of the room (a wooden table and/or metre stick will swell
or shrink)

It is possible to come up with many other sources of uncertainty, but it should
be clear that this does not make the uncertainty you use arbitrarily large.
In this example, you’d probably ultimately believe your measurement to be
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within a cm or so, no matter what, and so that is the uncertainty you should
use. (On the other hand, your uncertainty should not be unrealistically
small. Even if the metre stick has a precision measure of say, one millimetre,
your uncertainty is obviously bigger than that if the ends of the table have
variations of 3 or 4 millimetres from one side of the table to the other.)

Usually if the uncertainty in a quantity is bigger than the preci-
sion measure, it will be due mainly to a single factor, or perhaps
a couple of factors. It is rare that there will be several errors
equally contributing to the uncertainty in a single quantity.

Repeatability of Measurements

Whether we repeat a measurement or not, its realistic uncertainty should
reflect how close we would be able to be if we attempted to repeat the exper-
iment. This reflects many things, including the strictness of our definition
of what we are measuring. A later section of the lab manual, Chapter 9,
“Repeated Independent Measurement Uncertainties”, will discuss how to cal-
culate the uncertainty if we are actually able to repeat a measurement several
times.

Here’s a guideline for determining the size of the “realistic un-
certainty” in a quantity: If someone was to try and repeat your
measurement, with only the instructions you have written about
how the measurement was made, how big a discrepancy could
they reasonably have from the value you got?

Subjectivity

Suppose you are measuring the distance between two dots on a page with
a ruler. If the ruler has a precision measure of 0.5mm, but the dots are
non-uniform “blobs” which are several millimetres wide, then your effective
uncertainty is going to be perhaps a few millimeters. The subjectivity in
determining the centre of the blobs is responsible for this. When you find
yourself in this situation, you should note why you must quote a larger un-
certainty than might be expected, and how you have determined its value.
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7.2.5 Zero Error

Some measuring instruments have a certain zero error associated with them.
This is the actual reading of the instrument when the expected value would
be zero. For instance, if a spring scale reads 5g with no weight hanging on
it, then it has a zero error of 5g. Any measurement made will thus be 5g too
high, and so 5g must be subtracted from any measurements. (If the zero error
was minus 5g, then 5g would have to be added to every subsequent measure-
ment. Always be sure to check and record the zero error of an instrument
with its uncertainty. (Since the zero error is itself a measurement, then it has
an uncertainty just like any other measurement.) Subsequent measurements
with that instrument should be corrected by adding or subtracting the zero
error as appropriate.

With some very sensitive digital instruments, there may be another factor:
if the “zero” value of the scale fluctuates over time, then the fluctuation
should be taken into account.

7.3 Precision and Accuracy

Two concepts which arise in the discussion of experimental errors are preci-
sion and accuracy which, in general, are not the same thing.

7.3.1 Precision

Precision refers to the number of significant digits and/or decimal places
that can be reliably determined with a given instrument or technique. The
precision of a quantity is revealed by its uncertainty.
Precision (or uncertainty) can be expressed as either absolute or relative. In
the first case, it will have the same units as the quantity itself; in the latter,
it will be given as a proportion or a percentage of the quantity.

Uncertainties may be expressed in the first manner, ( i.e. having units),
are called absolute uncertainties. Uncertainties be expressed as a percent-
age of a quantity are then called percentage uncertainties.

For example, the measurement of the diameter of two different cylinders
with a meter stick may yield the following results:

d1 = 0.10±0.05cm

d2 = 10.00±0.05cm
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Clearly, both measurements have the same absolute precision of 0.05 cm, i.e.,
the diameters can be determined reliably to within 0.5 millimeters, but the
relative precisions are quite different. For d1, the relative precision is

0.05

0.10
× 100% = 50.0%

whereas for d2 it is
0.05

10.00
× 100% = 0.5%

so we could express these two quantities as

d1 = 0.10± 50.0%

d2 = 10.00± 0.5%

An error which amounts to a half a percent in the overall diameter is probably
not worth quibbling about, but a fifty percent error is highly significant.
Consequently, we would say that the measurement of d2 is more precise than
the measurement of d1. The relative precision tells us immediately that
there is something wrong with the first measurement, namely, we are using
the wrong instrument. Something more precise is needed, like a micrometer
or vernier calipers, where the precision may be more like ±0.0005 cm.

When comparing quantities, the more precise value is the one
with the smaller uncertainty.

7.3.2 Accuracy

Accuracy refers to how close the measured value is to the ‘true’ or correct
value. Thus, if a steel bar has been carefully machined so that its length
is 10.0000 ± 0.0005 cm, and you determine its length to be 11.00 ± 0.05
cm, your measurement is precise, but inaccurate. On the other hand, if
your measurement is 10.0 ± 0.5 cm, it is accurate, but imprecise, and a
measurement of the length which yields a value of 10.001 ± 0.005 cm can
be considered to be accurate and precise. Errors in precision and errors in
accuracy arise from very different causes, as we shall discuss in the next
section.

If you do not know what value to “expect” for a quantity, then you
cannot determine the accuracy of your result. This will sometimes be the
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case. However, even in these cases, you will often still be able to use common
sense to determine whether a value is plausible. For instance, if you measured
the mass of a marble to be 21kg, you should realize that is unreasonable. If
you get a value which is unreasonable, you should try and figure out why.
(In this case, it may be that the mass should be 21 grams ; incorrect units
are a common source of odd results.)

When comparing quantities, the more accurate value is the one
which is closer to the “correct” or expected value.

Systematic errors affect the accuracy of a measurement or result,
while random errors affect the precision of a measurement or
result.

7.4 Significant Figures

The approximate number 14.26 is said to be correct to 4 figures, or to have
4 figure accuracy. Those figures that are known with reasonable accuracy
are called significant figures. It is permissible to retain only one estimated
figure in a result and this figure is also considered significant.

If three numbers are measured to be 327, 4.02, and 0.00268 respectively,
they are each said to have three significant digits. Thus, in counting signifi-
cant figures, the decimal place is disregarded. Zeros at the end of a number
are significant unless they are merely place holders. If, for example, a mass
is found to be 3.20 grams, the zero is significant. On the other hand, when
the distance to the sun is given to be 150,000,000 km, this is considered
to have only 2 significant digits. Note that there is some ambiguity about
the significance of the trailing zeros in this case. This can be avoided by
the use of scientific notation, which for the above measurement would be
1.5× 108 km. (Note that in this case, zeros are never place holders, and so,
if shown, are always significant.) The following rules tell us which digits are
significant in an approximate number:

1. all digits other than zero are significant

2. zeros between non–zero digits are significant

3. leading zeros in a number are not significant
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4. trailing zeros in a number may or may not be significant. Use the
standard form when appropriate to avoid any confusion of this type.

7.4.1 Significant Figures in Numbers with Uncertain-
ties

When quantities have uncertainties, they should be written so that the un-
certainty is given to one significant digit, and the the least significant digit of
the quantity is the uncertain one. Thus, if a mass is measured to be 152.1g
with an uncertainty of 3.5g, then the quantity should be written as

152± 4g

(Note the “2” is the uncertain digit.)

When using scientific notation, you should separate the power of
ten from both the quantity and its uncertainty to make it easier
to see that this rule has been followed. This is known as the
standard form. Use the standard form when the quantities
you are quoting have placeholder zeroes. When they don’t, the
standard form is unnecessary and a bit cumbersome. If you are
using the standard form correctly, it should allow you to present
results with uncertainties more concisely. Any time that it would
be shorter to present a result without using the standard form, it
should not be used.

For instance, if the speed of light was measured to be 2.94×108m/s with
an uncertainty of 6.3× 106m/s, then it should be written as

c = (2.94± 0.06)× 108m/s

Note that this makes the relative uncertainty easier to determine.

7.4.2 Rounding Off Numbers

Often it is necessary to round off numbers. The length 14.26 feet if correct
to three figures is 14.3 feet, and if correct to two figures is 14 feet. Following
is a list of rules used when rounding off numbers:

1. when the digit immediately to the right of the last digit to be retained
is more than 5, the last digit retained is increased by one.
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2. when the digit immediately to the right of the last digit to be retained
is less than 5, the last digit retained is unchanged.

3. when the digit immediately to the right of the last digit to be retained
is 5, the last digit to be retained remains unchanged if even and is
increased by one if odd.

This last rule exists so that, for instance, 12.345 rounds to 12.34,
but 12.355 rounds to 12.36. If either of these were rounded again,
they would round correctly. However if the first had been rounded
to 12.35, then rounding again would make it 12.4, which is incor-
rect.

7.5 How to Write Uncertainties

There are different ways of expressing the same uncertainties; which method
is used depends on the circumstances. A couple of these will be described
below.

7.5.1 Absolute Uncertainty

An absolute uncertainty is expressed in the same units as the quantity.
Note that uncertainties are always expressed as positive quantities. For ex-
ample, in the quantity

123± 4cm

“4” is the uncertainty (not “±4”), and both the 123 and the 4 are in cm.

7.5.2 Percentage Uncertainty

An uncertainty can be written as a percentage of a number, so in the above
example we could write

123± 4 = 123±
(

4

123

)
× 100% = 123± 3%

Generally percentage uncertainties are not expressed to more than one or
two significant figures.
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7.5.3 Relative Uncertainty

Although uncertainties are not actually presented this way, they are often
used this way in calculations, as you will see later. The relative uncertainty is
simply the ratio of the uncertainty to the quantity, or the percent uncertainty
divided by 100. So again, in the example above, the relative uncertainty is

4

123

7.6 Bounds on Uncertainty

Occasionally you will have to measure a quantity for which the uncertainty
is unknown. In these cases, the uncertainty can be bounded by varying
the quantity of interest by a small amount and observing the resulting effect.
The uncertainty is the amount by which the quantity of interest can be varied
with no measurable effect. This is a case where trying to induce more error
in an experiment may be desirable! Suppose that you have a circuit, and you
think that the resistance in the wires of the circuit may be affecting your
results. You can test this hypothesis by increasing the lengths of the wires
in your circuit; if your results do not get worse, then there is no evidence
that the original length of wires caused a problem.

7.7 Recap

When performing an experiment,

• every measurement has an uncertainty

• every measuring instrument has a degree of uncertainty associated with
it called its precision measure

• sometimes experimental factors produce an effective uncertainty which
is bigger than the precision measure

• precision refers to the size of the uncertainty in a quantity; a number
with a smaller uncertainty is more precise.
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• accuracy refers to how closely a measurement or calculation is to its
“correct” value; Note: You can only determine accuracy if you
have solid evidence for a “correct” value.

• a systematic error is some experimental factor which will introduce
an uncertainty into measurements which will always be in the same
direction

• a random error is some experimental factor which will introduce an
uncertainty into measurements which will not always be in the same
direction

• uncertainties can be expressed in absolute or relative terms

• all measurements must be recorded with uncertainties
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Chapter 8

Some Measuring Instrument
Concepts and Examples

8.1 Before you come to the lab

8.2 Introduction

Doing experiments in science involves measuring. In order to take useful
measurements, a few concepts need to be understood:

8.2.1 Range

Any instrument has a limit to the values it can measure. For instance, a
metre stick can only measure lengths up to a metre. When you choose an
instrument to measure something, you are probably making an estimate in
your head of how big the things is you’re going to measure to be sure that
the instrument you use will work.

Examples of range

What is the largest measurement you can make with each of these?

1. Vernier caliper (approximately)

2. micrometer caliper (approximately)

3. spring scale A
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4. spring scale B

Since you’ll use these same instruments for several exercises and
labs, it makes sense to have these tables in one place where you
can simply reference them for other exercises and labs, rather
than having to record the information each time.

Why have multiple instruments for one quantity?

Since not all instruments measuring one quantity, (such as length), have the
same range, why wouldn’t you just use the instrument with the biggest range
for all measurements? (e.g. Why wouldn’t you just use a meter stick for all
length measurements?)

8.2.2 Precision

If you want to compare two objects to see if they are the same in some way,
such as whether two marbles have the same mass, you need to measure them
with some instrument. The precision of an instrument refers to how close
two measurements can be and still be distinguished. Usually instruments
with a large range don’t have as much precision, (or, “are not as precise”),
as instruments with a small range.

Digital instruments

If you have a digital clock, which shows hours and minutes, how close can
two times be and still be different? Obviously, if they are at least 1 minute
apart, then they are different. What about a stopwatch that measures to
hundredths of seconds? Times that are at least one hundredth of a second
apart will be distinct. Since these times are much closer than the times which
the digital clock can distinguish, we say the stopwatch is more precise than
the clock.

We call this smallest difference between two measurements which can be
distinguished the precision measure of an instrument. A smaller precision
measure indicates a more precise instrument.
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For a digital instrument, the precision measure is the distance be-
tween the value you measure and the next possible value. (If the
instrument “autoranges”, then the precision measure will change
when the range changes. Watch out for that.)

Scales and analog instruments

Many measuring instruments are not digital; they are analog. This means
that rather than giving an unambiguous distinct value, they show a contin-
uous range of possible values. Consider the scale reading in Figure 8.1.

0 5 10

Figure 8.1: An analog scale

First of all, the left edge of the object is lined up with the zero of the
scale, so we should be able to read the length of the object from the scale
at the right edge of the object. It’s pretty clear that that the object ends
between the ‘7’ and the ‘8’ of the scale. Now take a look at another object
measured with the same scale in Figure 8.2.

0 5 10

Figure 8.2: Different measurement?
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This object also ends between the ‘7’ and the ‘8’ of the scale. The question
is: Can these two objects be distinguished?

The first object is closer to the ‘8’ than the ‘7’, while the second object
is closer to the ‘7’ than the ‘8’, so we might say they can possibly be distin-
guished. What scientists usually do in this situation is to estimate one more
digit than they know for sure. So, for the first one, I might estimate it to be
7.7 units. (Someone else might estimate it to be 7.8 units, but that’s fine.)
The second one I estimate to be 7.2 units. (Someone else might estimate it to
be 7.3 units, but that’s also fine.) The precision measure of a scale like this
would be said to be one half of the smallest spacing on the scale. Since this
scale has spacings 1 unit apart, the precision measure would be 0.5 units.

Examples of analog instrument precision measure

In order to use instruments, you need to understand how to operate and read
them. Here are instructions on how to use two important ones.

Micrometer Caliper
A micrometer caliper is shown in Fig. 8.3, and a reading from a mi-

crometer scale is shown in Fig. 8.4. As with other non-digital instruments,
you must estimate one more digit than you know. The uncertainty is one
half of the smallest division, as it would be for any non-digital instrument.1

Always use the ratchet to close a micrometer caliper; never use
the thimble because that would allow you to apply enough force
to damage the caliper.

Figure 8.4 gives an example of a reading from a micrometer scale.
While the micrometer scale is linear, it is a little different than a regu-

lar scale because there are actually two distinct scales which must be read
to determine the measurement. There is a horizontal scale on the barrel,
which counts rotations of the thimble, and a vertical scale on the thimble,
which gives the fractional part of the reading. (Usually the numbers on the
thimble will go up to 50, meaning that each complete rotation of the thimble
represents a change of 0.5 of the units of the barrel scale.)

1The reason a micrometer is so named is that when the main scale is in millimetres,
the digit estimated will be in thousandths of millimetres; i.e. in “micrometres”.
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Figure 8.3: Micrometer Caliper

?

Thimble cuts scale between 12 and 12.5.

� Centreline cuts between 42 and 43.
Estimate one more digit; say “7”.

40

45105

The final reading is 12.427 ± 0.005 mm.

Figure 8.4: Reading a Micrometer Scale

Vernier Caliper

A Vernier caliper is shown in Fig. 8.5. A reading from a vernier scale is
shown in Fig. 8.6. The example shown is fairly simple. It is possible to have
vernier scales which are more complicated, but the principle of operation
is the same. The important thing to understand is the purpose of the two
scales, and how to tell which is which.

Fall 2016



50 Some Measuring Instrument Concepts and Examples

� inner jaws

� outer jaws

Figure 8.5: Vernier Caliper
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“0” of vernier scale falls between
36 and 37 on main scale.

40 45 50

0

A
A
A
AK

“1” of vernier scale lines up closest
with a line above on main scale.

5 10

The final reading is 36.1 ± 0.1 (of whatever appropriate units).

Figure 8.6: Reading a Vernier Scale

Remember that the precision measure is the smallest difference
between two measurements which can be distinguished, so that if
the difference between two measurements is less than the precision
measure they are the same. (Or, to be more correct, we say that
they are “the same within experimental uncertainty”).
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8.2.3 Precision and Measurement Uncertainty

Since the precision measure is the smallest difference between two measure-
ments which can be distinguished, then we can say that a measurement made
with a given instrument will have an uncertainty equal to the precision mea-
sure. This means that another measurement would have to be either smaller
or larger than this one by at least the precision measure to be distinguished
from it. For this reason, the way that we usually record a measurement is

value ± precision measure

0 5 10

Figure 8.7: Measuring a realistic object

Data with Unknown Precision Measure

Sometimes you may have to work with data from someone else where you
are not told the precision measure. In this case you may have to infer the
precision measure from the data.

Each of the columns in Table 8.1 hints at probable values for the precision
measure for each of the three variables, X, Y , and Z.

• Note that all of the values in the X column end in either 0 or 5. This
suggests that 5 is the smallest increment between the values, and so we
can infer a precision measure of 5 for X.

• In the Y column, note that the least significant digit of each value is
even. This suggests that 0.02 is the smallest increment between the
values, and so we can infer a precision measure of 0.02 for Y .
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point number X Y Z

1 25 0.86 3.6
2 30 0.92 4.2
3 25 0.68 2.7
4 5 0.74 5.1
...

...
...

...
N 10 0.80 1.9

Table 8.1: Data with unknown precision measure

• The values in the Z column don’t exhibit any obvious pattern, but they
all go to only one place after the decimal, so we can infer a precision
measure of 0.1 for Z.

8.2.4 Effective Uncertainties

Reality is not always precise

Many times when we take measurements the precision measure of the instru-
ment doesn’t really matter, since we’re trying to measure something “fuzzy”.
Look at the object in Figure 8.7. Since it doesn’t have straight edges, mea-
suring the length is a bit problematic. In fact, what we want to measure may
depend on why we want to measure it. Consider these questions:

1. If we used this to prop open a window, how big a window opening could
we have?

2. If we wanted to determine the area of the object, what length would
we want?

3. If we wanted to use the edge for drawing straight lines on paper, what
length of line could we draw?

In a situation where the precision measure isn’t really the limitation on the
precision of a measurement, we estimate a realistic or effective uncertainty
based on whatever sort of limits make sense.
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If we’re going to give a realistic (or effective) uncertainty, it’s
going to have to be bigger than the precision measure, because
the precision measure is the best we can do with the instrument.
(Remember that if the difference between two measurements is
less than the precision measure they are the same.)

8.2.5 Accuracy

The accuracy of an instrument refers to how close a measurement is to
the true value of the quantity being measured. Usually if an instrument is
inaccurate it is due to one of two factors:

• It doesn’t read zero when it should.

• Readings that should be something other than zero are off by amounts
that depend on the readings themselves.

The first of these is known as zero error and the second is known as cali-
bration error or linearity error.

Zero error

Some measuring instruments have a certain zero error associated with
them. This is particularly true of micrometer calipers, as used in this exper-
iment. Take note of the actual reading of the instrument when the expected
value would be zero. (For example, close the calipers and record the reading
you get with its uncertainty.) Subsequent measurements should be corrected
by adding or subtracting the zero error as appropriate. For some instruments,
zero error will be easy to determine. For others, it may be very difficult.

Note that since the zero error is a reading taken from the instru-
ment, it has an uncertainty equal to the precision measure, like
any other measurement would.

• Spring Scale

If you look at the portion of a spring scale near zero, you may see zero
error. Remember to record it with its uncertainty, and to state whether
the zero error should be added or subtracted to subsequent readings.
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Be sure to hang the scale vertically to determine the zero error, and
explain why this is important.

• Micrometer Caliper

If you look at the portion of a micrometer caliper near zero, you may
see zero error. Remember to record it with its uncertainty, and to state
whether the zero error should be added or subtracted to subsequent
readings. Be sure to use the friction screw when closing the micrometer
to avoid damaging it.

Calibration Error (or linearity error)

A good example of a linearity error would be seen in a metal ruler. Since
metal expands when heated, if the ruler was used at very high or very low
temperatures the readings would be correspondingly high or low. (On the
other hand, a wooden ruler may absorb humidity from the air and expand,
or dry out and contract.)

Testing the linearity of a spring scale Over time, it is possible for the
spring in a spring scale to get stretched out so that its response is not what
it was originally. For the spring scale, one could

1. Check the reading with no load and record the zero error, if any. (Be
sure to include the uncertainty.)

2. Check the reading with a known mass that should give the full-scale
reading, or close to it, and record it. (As always, be sure to include the
uncertainty.)

3. Adjust for the zero error from the full-scale (or whatever you used)
reading. Record the value. (Call the the measured range.)

4. Subtract the known mass from the measure range and record the ab-
solute value of the result. (Call this the range difference.)

If the range difference was less than twice the precision measure of the scale,
then you have no linearity error. If not, then you do. If a device has linearity
error then remember to indicate whether it will tend to read higher or lower
than it should.
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While the precision measure of an instrument can usually be ob-
tained by simply looking at the instrument, the accuracy of an
instrument can only be determined by using it to measure known
reference quantities.

8.3 Recap

Some specific rules about uncertainties:

• the precision measure of a digital instrument is the distance between
one measurement and the next possible measurement

• the precision measure of an analog instrument is one half of the distance
between the scale markings

• a measurement should always be recorded with enough digits that its
last digit is in the same decimal place as the precision measure of the
instrument

• if some experimental factor creates an effective uncertainty bigger than
the precision measure, the this experimental factor must be noted and
a bound for the effective uncertainty must be determined
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Chapter 9

Repeated Independent
Measurement Uncertainties

If a quantity is measured several times, it is usually desirable to end up with
one characteristic value for the quantity. (Quoting all the data may be more
complete, but will not result in the kind of general conclusion that is desired.)
The uncertainty in a quantity measured several times is the bigger of the
uncertainty in the individual measurements and the uncertainty related to
the reproducibility of the measurements. Most of this write-up deals with
how to determine the latter quantity.

Sometimes an attempt at a single measurement will give multiple values.
For instance, a very sensitive digital balance may produce a reading which
fluctuates over time. Recording several values over a period of time will
produce a more useful result than simply picking one at random. There are
3 common values which are extracted from data distributions which may be
considered “characteristic” in certain circumstances. They are the mean,
the median, and the mode. The mean is simply the average, with which
you are familiar. The median is the “middle” value; the value which has
an equal number of measurements above and below 1. (StatsCan often reports
the median income, rather than the average. The average wealth of people in
Redmond, Washington, where Bill Gates lives, is huge, but it doesn’t affect
most people.) The mode is the most commonly occurring value. (If there
is a continuous range of data values, then the data may be grouped into

1If there are an even number of points, the median is the average of the two central
ones.
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smaller “bins” so that a mode of the bins may be defined. Tax brackets for
Revenue Canada are an example of these bins.) Depending on the reason for
the experiment, the choice of a characteristic answer may change.

In a Gaussian, or normal distribution, the above decision is simplified by
the fact that the mean, median, and mode all have the same value. Thus, if
the data are expected to fit such a distribution, then an average will probably
be a good choice as a quantity characteristic of all of the measurements.
The uncertainty in this characteristic number will reflect the distribution of
the data. Since the variations in the observations are governed by chance,
one may apply the laws of statistics to them and arrive at certain definite
conclusions about the magnitude of the uncertainties. No attempt will be
made to derive these laws but the ones we need will simply be stated in the
following sections.

9.1 Arithmetic Mean (Average)

Note: (In the following sections, each measurement xi can be assumed to have
an uncertainty ∆xi due to measurement uncertainty. How this contributes
to the uncertainty in the average, etc. will be explained later.)

The arithmetic mean (or average) represents the best value obtainable
from a series of observations from “normally” distributed data.

Arithmetic mean = x =
∑n

i=1 xi
n

= x1+x2+···+xn
n

9.2 Deviation

The difference between an observation and the average is called the devia-
tion and is defined as

Deviation = δxi = |xi − x|

9.2.1 Average Deviation

The average deviation, which is a measure of the uncertainty in the ex-
periment due to reproducibility, is given by

Average Deviation = δ =

∑n
i=1 |xi − x|

n
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9.2.2 Standard Deviation

The standard deviation of a number of measurements is a more common
measurement of the uncertainty in an experiment due to reproducibility than
the average deviation. The standard deviation is given by

Standard Deviation = σ =

√∑n
i=1(xi − x)2

n− 1

=
1√
n− 1

√√√√ n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

(One of the main advantages of using the standard deviation instead of the
average deviation is that it can be expressed in the second form above which
can be simply re–evaluated each time a new observation is made.) With ran-
dom variations in the measurements, about 2/3 of the measurements should
fall within the region given by x ± σ, and about 95% of the measurements
should fall within the region given by x±2σ. (If this is not the case, then ei-
ther uncertainties were not random or not enough measurements were taken
to make this statistically valid.)

This occurs because the value calculated for x, called the sample mean,
may not be very close to the “actual” population mean, µ, which one would
get by taking an infinite number of measurements. (For example, if you take
2 measurements of a quantity and get values of 1 and 2 respectively, should
you guess that the “actual” value is 1, 1.5, 2, or something else?) Because
of this, there is an uncertainty in the calculated mean due to the random
variation in the data values. This uncertainty will be discussed further in
the following section.

Rule of thumb: For normally distributed data, an order of magni-
tude approximation for the standard deviation is 1/4 the range of
the data. (In other words, take the difference between the maxi-
mum and minimum values and divide by 4 to get an approximate
value for the standard deviation.)

9.3 Standard Deviation of the Mean

(In some texts this quantity is called the “standard error of the mean”.)
Once a number of measurements have been taken, and a mean calculated,
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one may calculate the uncertainty in the calculated mean due to the scatter
of the data points, (i.e. reproducibility). Or to be more precise, one can
calculate an interval around the calculated mean, x, in which the population
mean, µ, can be reasonably assumed to be found. This region is given by the
standard deviation of the mean,

Standard deviation of the mean = α =
σ√
n

and one can give the value of the measured quantity as x ± α. (In other
words, µ should fall within the range of x± α.)

If possible, when doing an experiment, enough measurements of a quantity
should be taken so that the uncertainty in the measurement due to instru-
mental precision is greater than or equal to α. This is so that the random
variations in data values at some point become less significant than the in-
strument precision. (In practice this may require a number of data values
to be taken which is simply not reasonable, but sometimes this condition will
not be too difficult to achieve.)

In any case, the uncertainty used in subsequent calculations
should be the greater of the uncertainty of the individual mea-
surements and α.

In mathematical terms2,

∆x = max (α, p.m.)

since p.m., the precision measure of the instrument, would be the uncertainty
in the average due to the measurement uncertainties alone.

(Note that you need not calculate uncertainties when calculating the av-
erage deviation, the standard deviation, and the standard deviation of the
mean, since these quantities are used to determine the uncertainty in the
data due to random variations.)

2 This is only strictly true if the precision measure is the uncertainty in each of the
individual measurements. It is possible that there would be different uncertainties in

different measurements, in which case the result should be written ∆x = max
(
α, (∆xi)

)
,

where ∆xi is the uncertainty in measurement i.
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i xi x2
i

1 1.1 1.21
2 1.4 1.96
3 1.3 1.69
4 1.2 1.44

n
∑
xi

∑
x2
i

4 5.0 6.3

Table 9.1: Sample Data

9.4 Preferred Number of Repetitions

Since the the uncertainty of the average is the greater of the uncertainty of
the individual measurements and α, and α decreases with each additional
measurement, then there is a point at which alpha will equal the precision
measure. In this case, the experiment is “optimized” in the sense that in
order to improve it (i.e. reduce the uncertainty in the result), one would
have to get a more precise instrument and take more measurements. This
situation occurs when

α = p.m.

so if we set

p.m. =
σ√

Noptimal

and solve for Noptimal, then the result will be the optimal number of repeti-
tions. (Keep in mind that σ does not change much after a few measurements,
so it can be calculated and used in this equation.)

9.5 Sample Calculations

Following is an example of how the mean, standard deviation, and standard
deviation of the mean are calculated. (The xi values represent a set of data;
x1 is the first value, x2 is the second, etc.)

Therefore

x =

∑n
i=1 xi
n

=
5.0

4
= 1.25
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and so

σ =

√∑n
i=1(xi − x)2

n− 1

=
1√
n− 1

√√√√ n∑
i=1

x2
i −

(
∑n

i=1 xi)
2

n

=
1√

4− 1

√
(6.3)− (5.0)2

4
= 0.129099

thus

α =
σ√
n

=
0.129099√

4
= 0.06455

The uncertainty which should be quoted with the average above will be
the bigger of the uncertainties in the individual measurements and the stan-
dard deviation of the mean. So, if the above xi values all had an uncertainty
of 0.05, then since 0.05 is less than α, we would write

x = 1.25± 0.06

If, on the other hand, the xi had an uncertainty of 0.07 units, then we would
write

x = 1.25± 0.07

since 0.07 is greater than α.
Note that in both of these cases, the uncertainties have been rounded to

one significant digit, and the average is rounded so that its last significant
digit is the uncertain one, as required.

9.6 Simple Method; The Method of Quartiles

There is a way to get values very close to those given by calculating the
mean and standard deviation of the mean with very little calculation. (This
will be true if the data have a Gaussian3 distribution.) The method involves
dividing the data into quartiles. The first quartile is the value which is above

3or “normal”
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1/4 of the data values; the second quartile is the value which is above 1/2
of the data values4 and so on. The second quartile gives a good estimate
for the average, and the third quartile minus the first quartile gives a good
estimate5 for the standard deviation. Thus,

x̄± α ≈ Q2 ±
(Q3 −Q1)√

n

If you use a number of data values which is a perfect square, such as 16, then
the only calculation is one division!

9.7 Recap

When dealing with a set of numbers, calculate

• the average, x̄

• the standard deviation, σ

• the standard deviation of the mean, α

• the uncertainty in the average, which is the bigger of the precision
measure of the instrument and the the standard deviation of the mean

The range of the set of numbers (biggest minus smallest) is about four times
the standard deviation.

4which is also the median
5Actually the inter-quartile distance or IQR ≈ 1.35 σ for normally distributed data.
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Chapter 10

Uncertain Results

10.1 The most important part of a lab

The “Discussion of Errors” (or Uncertainties) section of a lab report is where
you outline the reasonable limits which you place on your results. If you have
done a professional job of your research, you should be prepared to defend
your results. In other words, you should expect anyone else to get results
which agree with yours; if not, you suspect theirs. In this context, you want
to discuss sources of error which you have reason to believe are significant.

10.2 Operations with Uncertainties

10.2.1 Determining Uncertainties in Functions by Al-
gebra

Uncertainties in Functions of a Single Variable Algebraically

Consider a function as shown in Figure 10.1. If we want the know the un-
certainty in f(x) at a point x, what we mean is that we want to know the
difference between f(x+ ∆x) and f(x).
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f(x)

y = f(x)

x

f(x+ ∆x)

∆x

Figure 10.1: Uncertainty in a Function of x

y = f(x)

f(x)

x

f(x+ ∆x)

f(x) + f ′(x)×∆x

∆x

Figure 10.2: Closer View of Figure 10.1
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If we take a closer look at the function, like in Figure 10.2, we can see
that if ∆x is small, then the difference between the function and its tangent
line will be small. We can then say that

f(x) + f ′(x)×∆x ≈ f(x+ ∆x)

or

∆f(x) ≈ f ′(x)×∆x

For a function with a negative slope, the result would be similar, but the
sign would change, so we write the rule with absolute value bars like this

∆f(x) ≈ |f ′(x)|∆x (10.1)

to give an uncertainty which is positive.1 Remember that uncertainties are
usually rounded to one significant figure, so this approximation is generally
valid.

Example: Marble volume Here is an example. Suppose we measure the
diameter of a marble, d, with an uncertainty ∆d, then quantities such as the
volume derived from d will also have an uncertainty. Since

V =
4

3
π

(
d

2

)3

then

V ′ = 2π

(
d

2

)2

=
π

2
d2

and so

∆V ≈
∣∣∣π
2
d2
∣∣∣∆d

If we have a value of d = 1.0±0.1 cm, then ∆V = 0.157 cm3 by this method.
Rounded to one significant figure gives ∆V ≈ 0.2 cm3.

1Now our use of the ∆ symbol for uncertainties should make sense; in this example
it has been used as in calculus to indicate “a small change in”, but for experimental
quantities, “small changes” are the result of uncertainties.
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Uncertainties when Combining Variables Algebraically

When numbers, some or all of which are approximate, are combined by ad-
dition, subtraction, multiplication, or division, the uncertainty in the results
due to the uncertainties in the data is given by the range of possible calculated
values based on the range of possible data values.

Remember: Since uncertainties are an indication of the imprecise
nature of a quantity, uncertainties are usually only expressed to
one decimal place. (In other words, it doesn’t make sense to have
an extremely precise measure of the imprecision in a value!)

For instance, if we have two numbers with uncertainties, such as x = 2±1
and y = 32.0 + 0.2, then what that means is that x can be as small as 1 or
as big as 3, while y can be as small as 31.8 or as big as 32.2 so adding them
can give a result x+y which can be as small as 32.8 or as big as 35.2, so that
the uncertainty in the answer is the sum of the two uncertainties. If we call
the uncertainties in x and y ∆x and ∆y, then we can illustrate as follows:

Adding

x ± ∆x = 2 ± 1
+ y ± ∆y = 32.0 ± 0.2

(x+ y) ± ? = 34.0 ± 1.2
= (x+ y) ± (∆x+ ∆y)

Thus

∆(x+ y) = ∆x+ ∆y (10.2)

Thus x+y can be between 32.8 and 35.2, as above. (Note that we should
actually express this result as 34±1 to keep the correct number of significant
figures.)

Remember: Uncertainties are usually only expressed to one dec-
imal place, and quantities are written with the last digit being
the uncertain one.
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Subtracting

If we subtract two numbers, the same sort of thing happens.

x ± ∆x = 45.3 ± 0.4
− y ± ∆y = −18.7 ± 0.3

(x− y) ± ? = 26.6 ± 0.7
= (x− y) ± (∆x+ ∆y)

Thus

∆(x− y) = ∆x+ ∆y (10.3)

Note that we still add the uncertainties, even though we subtract the
quantities.

Multiplying

Multiplication and division are a little different. If a block of wood is found
to have a mass of 1.00± 0.03 kg and a volume of 0.020± 0.001 m3, then the
nominal value of the density is 1.00kg

0.020m3 = 50.0kg/m3 and the uncertainty in
its density may be determined as follows:

The mass given above indicates the mass is known to be greater than
or equal to 0.97 kg, while the volume is known to be less than or equal to
0.021 m3. Thus, the minimum density of the block is given by 0.97kg

0.021m3 =

46.2kg/m3. Similarly, the mass is known to be less than or equal to 1.03 kg,
while the volume is known to be greater than or equal to 0.019 m3. Thus,
the maximum density of the block is given by 1.03kg

0.019m3 = 54.2kg/m3.

Notice that the above calculations do not give a symmetric range of uncer-
tainties about the nominal value. This complicates matters, but if uncertain-
ties are small compared to the quantities involved, the range is approximately
symmetric and may be estimated as follows:
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x±∆x = 1.23± 0.01 = 1.23
± (0.01/1.23× 100%)

× y ±∆y = ×7.1± 0.2 = ×7.1
± (0.2/7.1× 100%)

(x× y)±? = 8.733±? ≈ 8.733
± ((0.01/1.23 + 0.2/7.1)× 100%)
≈ 8.733
± ((0.01/1.23 + 0.2/7.1)× 8.733)
≈ 8.733
± 0.317
≈ (x× y)

±
(

∆x
x

+ ∆y
y

)
(x× y)

Thus

∆(x× y) ≈
(

∆x

x
+

∆y

y

)
(x× y) (10.4)

So rather than adding absolute uncertainties, we add relative or percent
uncertainties. (To the correct number of significant figures, the above result
would be

x× y ≈ 8.7± 0.3

with one figure of uncertainty and the last digit of the result being the un-
certain one.)

If you’re a purist, or if the uncertainties are not small, then the uncer-
tainty in the density can then be estimated in two obvious ways;

1. the greater of the two differences between the maximum and minimum
and the accepted values

2. (or the maximum and minimum values can both be quoted, which is
more precise, but can be cumbersome if subsequent calculations are
necessary.)

(In the previous example, the first method would give an uncertainty of
4.2 kg/m3.)
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Dividing

Division is similar to multiplication, as subtraction was similar to addition.
x±∆x = 7.6± 0.8 = 7.6

± (0.8/7.6× 100%)
÷y ±∆y = ÷2.5± 0.1 = ÷2.5

± (0.1/2.5× 100%)
(x÷ y)±? = 3.04±? ≈ 3.04

± ((0.8/7.6 + 0.1/2.5)× 100%)
≈ 3.04

± ((0.8/7.6 + 0.1/2.5)× 3.04)
≈ 3.04

± 0.4416
= (x÷ y)

±
(

∆x
x

+ ∆y
y

)
(x÷ y)

Thus

∆(x÷ y) ≈
(

∆x

x
+

∆y

y

)
(x÷ y) (10.5)

(To the correct number of significant figures, the above result would be

x÷ y ≈ 3.0± 0.4

with one figure of uncertainty and the last digit of the result being the un-
certain one.)

Summary of Algebraic Rules

To summarize, the uncertainty in results can usually be calculated as in the
following examples (if the percentage uncertainties in the data are small):

(a) ∆(A+B) = (∆A+ ∆B)

(b) ∆(A−B) = (∆A+ ∆B)

(c) ∆(A×B) ≈ |AB|
(∣∣∆A

A

∣∣+
∣∣∆B
B

∣∣)
(d) ∆(A

B
) ≈

∣∣A
B

∣∣ (∣∣∆A
A

∣∣+
∣∣∆B
B

∣∣)
(e) ∆f(A±∆A) ≈ |f ′(A)|∆A

Note that the first two rules above always hold true.
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To put it another way, when adding or subtracting, you add absolute un-
certainties. When multiplying or dividing, you add percent or relative uncer-
tainties. Note that for the last rule above that angles and their uncertainties
must be in radians for the differentiation to be correct! (In the examples
above, absolute value signs were omitted since all positive quantities were
used.) (Some specific uncertainty results can be found in Appendix I.)

Remember that a quantity and its uncertainty should always have
the same units, so you can check units when calculating uncer-
tainties to avoid mistakes.

Three important corollaries: constants, inverses, and powers The
above rules can be used to derive the results for three very common situations;

• multiplying a quantity with an uncertainty by a constant

• inverting a quantity with an uncertainty

• raising a quantity with an uncertainty to a power

In the first case, a constant can be thought of as a number with no
uncertainty. The product rule above is

∆(A×B) ≈ |AB|
(∣∣∣∣∆AA

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣)

If A is a constant, then ∆A = 0, so

∆(A×B) ≈ |AB|
(∣∣∣∣���∆A

A

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣) =

∣∣A��B∣∣ (∣∣∣∣∆B
��B

∣∣∣∣) = |A∆B| = |A|∆B

In the second case, the inverse of a number can use the quotient rule with
‘1’ being a constant; i.e. having no uncertainty. So we have:

∆(
1

B
) ≈

∣∣∣∣ 1

B

∣∣∣∣ (∣∣∣∣��∆1

1

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣) ==

∣∣∣∣ 1

B

∣∣∣∣ ∣∣∣∣∆BB
∣∣∣∣

so the proportional uncertainty in the inverse of a quantity is the same
as the proportional uncertainty in the quantity itself.
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In the third case, the function rule is:

∆f(A±∆A) ≈ |f ′(A)|∆A

and so if

f(A) = An

then

f ′(A) = nAn−1

and so

∆(A±∆A)n ≈
∣∣nAn−1

∣∣∆A
10.2.2 Determining Uncertainties in Functions by In-

spection

Note: In the following section and elsewhere in the manual, the
notation ∆x is used to mean “the uncertainty in x”.

When we have a measurement of 2.0±0.3 cm, this means that the maximum
value it can have is 2.0+0.3cm. The uncertainty is the difference between this
maximum value and the nominal value (i.e. the one with no uncertainty).
We could also say that the minimum value it can have is 2.0−0.3 cm, and the
uncertainty is the difference between the nominal value and this minimum
value. Thus if we want to find the uncertainty in a function, f(x), we can
say that

∆f(x) ≈ fmax − f (10.6)

or

∆f(x) ≈ f − fmin (10.7)

where fmax is the same function with x replaced by either x+ ∆x or x−∆x;
whichever makes f bigger, and fmin is the same function with x replaced by
either x + ∆x or x − ∆x; whichever makes f smaller. (The approximately
equals sign is to reflect the fact that these two values may not be quite the
same, depending on the function f .) For instance, if

f(x) = x2 + 5
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then clearly, if x is positive, then replacing x by x + ∆x will make f a
maximum.

fmax = f(x+ ∆x) = (x+ ∆x)2 + 5

and so

∆f(x) ≈ fmax − f = f(x+ ∆x)− f(x) =
(
(x+ ∆x)2 + 5

)
−
(
x2 + 5

)
On the other hand, if we wanted to find the uncertainty in

g(t) =
1√
t

then, if t is positive, then replacing t by t−∆t will make g a maximum.

gmax = g(t−∆t) =
1√

(t−∆t)

and so

∆g(t) ≈ gmax − g = g(t−∆t)− g(t) =

(
1√

(t−∆t)

)
−
(

1√
t

)
If we had a function of two variables,

h(w, z) =

√
w

z2

then we want to replace each quantity with the appropriate value in order
to maximize the total, so if w and z are both positive,

hmax =

√
(w + ∆w)

(z −∆z)2

and thus

∆h ≈ hmax − h =

√
(w + ∆w)

(z −∆z)2 −
√
w

z2

Notice in each of these cases, it was necessary to restrict the range of the
variable in order to determine whether the uncertainty should be added or
subtracted in order to maximize the result. In an experiment, usually your
data will automatically be restricted in certain ways. (For instance, masses
are always positive.)
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Example:Marble volume Using the above example of the volume of a
marble,

∆V ≈ V (d+ ∆d)− V (d)

Since

V =
4

3
π

(
d

2

)3

then

∆V ≈ 4

3
π

(
d+ ∆d

2

)3

− 4

3
π

(
d

2

)3

If we have a value of d = 1.0±0.1 cm, then ∆V = 0.173 cm3 by this method.
Rounded to one significant figure gives ∆V ≈ 0.2 cm3 as the value to be
quoted.

Example: Marble volume If we have a value of d = 1.0 ± 0.1 cm, as
used previously, then ∆V = 0.157 cm3 by this method.

Mathematically, this result and the previous one are equal if
∆d << d. You can derive this using the binomial approxi-
mation, which simply means multiplying it out and discarding
and terms with two or more ∆ terms multiplied together; for
instance ∆A∆B ≈ 0

Determining Uncertainties by Trial and Error

For a function f(x, y), the uncertainty in f will be given by the biggest of

|f(x+ ∆x, y + ∆y)− f(x, y)|

or
|f(x−∆x, y + ∆y)− f(x, y)|

or
|f(x+ ∆x, y −∆y)− f(x, y)|

or
|f(x−∆x, y −∆y)− f(x, y)|

Note that for each variable with an uncertainty, the number of possibilities
doubles. In most cases, common sense will tell you which one is going to be
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the important one, but things like the sign of numbers involved, etc. will
matter a lot! For example, if you are adding two positive quantities, then
the first or fourth above will give the same (correct) answer. However, if one
quantity is negative, then the second and third will be correct.

The advantage of knowing this method is that it always works.
Sometimes it may be easier to go through this approach than to do
all of the algebra needed for a complicated expression, especially
if common sense makes it easy to see which combination of signs
gives the correct answer.

10.2.3 Choosing Algebra or Inspection

Since uncertainties are usually only expressed to one decimal
place, then small differences given by different methods of cal-
culation, (i.e. inspection or algebra), do not matter.

Example: Marble volume Using the previous example of the marble, if
we have a value of d = 1.0± 0.1 cm, then ∆V = 0.173 cm3 by the inspection
method. Rounded to one significant figure gives ∆V ≈ 0.2 cm3 as the value
to be quoted. By the algebraic method, ∆V = 0.157 cm3. Rounded to one
significant figure gives ∆V ≈ 0.2 cm3, which is the same as that given by the
previous method. So in this example a 10% uncertainty in d was still small
enough to give the same result (to one significant figure) by both methods.

10.2.4 Sensitivity of Total Uncertainty to Individual
Uncertainties

When you discuss sources of uncertainty in an experiment, it is important to
recognize which ones contributed most to the uncertainty in the final result.
In order to determine this, proceed as follows:

1. Write out the equation for the uncertainty in the result, using whichever
method you prefer.

2. For each of the quantities in the equation which have an uncertainty,
calculate the uncertainty in the result which you get if all of the other
uncertainties are zero.
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3. Arrange the quantities in descending order based on the size of the
uncertainties calculated. The higher in the list a quantity is, the greater
its contribution to the total uncertainty.

The sizes of these uncertainties should tell you which factors need to be
considered, remembering that only quantities contributing 10% or more to
the total uncertainty matter. For example, from before we had a function of

two variables,

h(w, z) =

√
w

z2

so by inspection, its uncertainty is given by

∆h ≈ hmax − h =

√
(w + ∆w)

(z −∆z)2 −
√
w

z2

So we can compute

∆hw ≈
√

(w + ∆w)

z2
−
√
w

z2

and

∆hz ≈
√
w

(z −∆z)2 −
√
w

z2

Note that in the first equation, all of the ∆z terms are gone, and in the
second, all of the ∆w terms are gone. By the algebraic method,

∆h ≈
√
w

z2

(
∆w

2w
+

2∆z

z

)
and so

∆hw ≈
√
w

z2

(
∆w

2w

)
and

∆hz ≈
√
w

z2

(
2∆z

z

)
Note that until you plug values into these equations, you can’t tell which
uncertainty contribution is larger.

In the above example, if we use values of w = 1.00 ± 0.01 and z =
2.00±0.02, then the proportional uncertainties in both w and z are the same,
1%. However, using either inspection or the algebraic method, ∆h = 0.006,
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and ∆hw = 0.001 while ∆hz = 0.005; in other words, the uncertainty in the
result due to ∆z is five times the uncertainty due to ∆w! (As you get more
used to uncertainty calculations, you should realize this is because z is raised
to a higher power than w, and so its uncertainty counts for more.) In order
to improve this experiment, it would be more important to try and reduce
∆z than it would be to try and reduce ∆w.

10.2.5 Simplifying Uncertainties

Uncertainty calculations can get quite involved if there are several quantities
involved. However, since uncertainties are usually only carried to one or
two significant figures at most, there is little value in carrying uncertainties
through calculations if they do not contribute significantly to the total.

You do not need to carry uncertainties through if they do not
contribute more than 10% of the total uncertainty, since uncer-
tainties are usually only expressed to one decimal place. (How-
ever, be sure to give bounds for these uncertainties when you do
this.)

Note that this shows a difference between doing calculations by hand
versus using a spreadsheet. If you are doing calculations by hand, it makes
sense to drop insignificant uncertainties like this.

If you’re using a spreadsheet in order to allow you to change the
data and recalculate, it may be worth carrying all uncertainties
through in case some of them may be more significant for different
data.

10.2.6 Uncertainties and Final Results

When an experiment is performed, it is crucial to determine whether or not
the results make sense. In other words, do any calculated quantities fall
within a “reasonable” range?

The reason for doing calculations with uncertainties is so that uncertain-
ties in final answers can be obtained. If, for instance, a physical constant
was measured, the calculated uncertainty determines the range around the
calculated value in which one would expect to find the “theoretical” value.
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If the theoretical value falls within this range, then we say that our results
agree with the theory within our experimental uncertainty.

For instance, if we perform an experiment and get a value for the accel-
eration due to gravity of g = 9.5 ± 0.5m/s2 then we can say that we say
that our values agrees with the accepted value of g = 9.8m/s2 within our
experimental uncertainty.

If we have two values to compare, such as initial and final momentum to
determine whether momentum was conserved, then we see if the ranges given
by the two uncertainties overlap. In other words, if there is a value or range
of values common to both, then they agree within experimental uncertainty.

So if an experiment gives us a value of pi = 51.2 ± 0.7 kg-m/s and pf =
50.8 ± 0.5 kg-m/s, then we would say the values agree within experimental
uncertainty since the range from 50.5 kg-m/s → 51.3 kg-m/s is common to
both. Since what we were studying was the conservation of momentum, then
we would say that in this case momentum was conserved within experimental
uncertainty. Note that if both uncertainties were 0.1 kg-m/s, then our results
would not agree and we would say that momentum was not conserved within
experimental uncertainty.

Mathematically, if two quantities a and b, with uncertainties ∆a
and ∆b are compared, they can be considered to agree within
their uncertainties if

|a− b| ≤ ∆a+ ∆b (10.8)

A constant given with no uncertainty given can usually be as-
sumed to have an uncertainty of zero.

If we need to compare 3 or more values this becomes more complex.

If two quantities agree within experimental error, this means that the dis-
crepancy between experiment and theory can be readily accounted for on the
basis of measurement uncertainties which are known. If the theoretical value
does not fall within this range, then we say that our results do not agree with
the theory within experimental uncertainty. In this situation, we cannot ac-
count for the discrepancy on the basis of measurement uncertainties alone,
and so some other factors must be responsible.
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If two numbers do not agree within experimental error, then the
percentage difference between the experimental and theoretical
values must be calculated as follows:

Percent Difference =

∣∣∣∣theoretical − experimentaltheoretical

∣∣∣∣× 100%

(10.9)

Remember: Only calculate the percent difference if your results
do not agree within experimental error.

In our example above, we would not calculate the percentage difference
between our calculated value for the acceleration due to gravity of g = 9.5±
0.5m/s2 and the accepted value of g = 9.8m/s2 since they agree within our
experimental uncertainty.

Often instead of comparing an experimental value to a theoretical one,
we are asked to test a law such as the Conservation of Energy. In this case,
what we must do is to compare the initial and final energies of the system in
the manner just outlined.2 If the values agree, then we can say that energy
was conserved, and if the values don’t agree then it wasn’t. In that case we
would calculate the percentage difference as follows:

Percent Difference =

∣∣∣∣initial − finalinitial

∣∣∣∣× 100% (10.10)

Significant Figures in Final Results

Always express final answers with absolute uncertainties rather than percent
uncertainties. Also, always quote final answers with one significant digit of
uncertainty, and round the answers so that the least significant digit quoted
is the uncertain one. This follows the same rule for significant figures in
measured values.

Even though you want to round off your final answers to the
right number of decimal places, don’t round off in the middle of
calculations since this will introduce errors of its own.

2 There is another possibility which you may consider. Suppose you compare the change
in energy to its expected value of zero. In that case, any non-zero change would result
in infinite percent difference, which is mathematically correct but not terribly meaningful
physically.
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10.3 Discussion of Uncertainties

In an experiment, with each quantity measured, it is necessary to consider all
of the possible sources of error in that quantity, so that a realistic uncertainty
can be stated for that measurement. The “Discussion of Uncertainties” (or
“Discussion of Errors”) is the section of the lab report where this process can
be explained.

Discussions of sources of error should always be made as concrete as
possible. That means they should be use specific numerical values and relate
to specific experimental quantities. For instance, if you are going to speak
about possible air currents affecting the path of the ball in the “Measuring
‘g’” experiment, you must reduce it to a finite change in either the fall time
or the height.

10.3.1 Relative Size of Uncertainties

f −∆f

f

f + ∆f

∆f

∆f

Figure 10.3: Relative Size of Quantity and its Uncertainty

The uncertainties which matter most in an experiment are those which
contribute most to the uncertainty in the final result. Consider Figure 10.4,
which may be seen as a magnification of one of the bands in Figure 10.3.
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biggest

next biggest

all the rest

Figure 10.4: Contributions of Various Sources to Total Uncertainty

If the big rectangle represents the uncertainty in the final result, and the
smaller rectangles inside represent contributions to the total from various
sources, then one source contributes almost half of the total uncertainty in
the result. The first two sources contribute about 75% of the total, so that
all of the other sources combined only contribute about 25%. If we want to
improve the experiment, we should try to address the factors contributing
most. Similarly, in discussing our uncertainties, the biggest ones deserve most
attention. In fact, since uncertainties are rounded to one decimal place, any
uncertainty contributing less than 10% to the final uncertainty is basically

Fall 2016



10.3 Discussion of Uncertainties 83

irrelevant. The only reason to discuss such uncertainties is to explain why
they are not significant.

10.3.2 Types of Errors

There are 3 major “categories” of sources of errors, in order of importance;

1. Measurable uncertainties-these are usually the biggest. The pre-
cision measure of each instrument used must always be recorded with
every measurement. If “pre-measured” quantities are used, (such as
standard masses), then there will usually be uncertainties given for
these as well. If physical constants are given they may have uncertain-
ties given for them, (such as the variation in the acceleration due to
gravity by height above sea level, latitude, etc.) Where the realistic
uncertainty in a quantity comes from any of these, (which will often be
the case), you do not usually need to refer to them in your discussion.
However, if there are any which contribute greatly to the uncertainty in
your results, you should discuss them. For example, when you measure
the mass of an object with a balance, then if the precision measure is
the uncertainty used in your calculations, you don’t need to discuss it,
unless it is one of the biggest uncertainties in your calculations. Keep
in mind that without these values being given, it is impossible to tell
whether any of the following sources of error are significant or not.

2. Bounded uncertainties-these are things which you observed, and
have put limits on and usually are much smaller than those in the group
above. (Remember that since uncertainties are ultimately rounded to
one significant digit, any which contribute less than 10% to the total
uncertainty can be ignored.) Since you have observed them, you can
give some estimate of how much effect they may have. For instance,
suppose you measure the length of a table with a metre stick, and no-
tice that the ends of the table are not exactly smooth and straight. If
you can find a way to measure the variation in the length of the table
due to this, then you can incorporate this into your uncertainty (if it
is big enough) and discuss it.
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A plausible error is one which can be tested. If you cannot figure
out how to test for an error, it is not worth discussing. (Putting a
bound on an error implies some method of testing for its existence,
even if you are not able to do it at the present time.)

3. Blatant filler-these are things you may be tempted to throw in to
sound more impressive. Don’t!!! If you did not observe them, don’t dis-
cuss them. If you suggest the gravitational pull of Jupiter is affecting
your results, you’d better be prepared to show evidence (such as get-
ting consistently different results at different times of day as the Earth
rotates and so changes the angle of Jupiter’s pull.) Do you even know
in which direction the pull of Jupiter would be???

If you are going to discuss a source of uncertainty, then you must
either have included it in your calculations, or given some rea-
sonable bounds on its size. If you haven’t done either of those,
forget it!

You must discuss at least one source of systematic error in your
report, even if you reject it as insignificant, in order to indicate
how it would affect the results.

10.3.3 Reducing Errors

Whenever errors are discussed, you should suggest how they may be reduced
or eliminated. There is a “hierarchy” of improvements which should be ev-
ident in your discussion. The following list starts with the best ideas, and
progresses to less useful ones.

1. Be smart in the first place. You should never suggest you may have done
something wrong in the lab; a professional who recognizes a mistake
goes back and fixes it before producing a report. If you find yourself
making a mistake which would seem likely to be repeated by other
people, you may want to mention it in your report so that instructions
may be clarified for the future.
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2. Repeat the measurements once or twice to check for consistency. Rep-
etition is a very good thing to do if your data are inconsistent or scat-
tered. If certain values appear to be incorrect, you may want to repeat
them to make sure. If this seems to be true, and you feel a measurement
was wrong, you should still include it in your report but explain why
it was not used in your calculations. (This is probably similar to the
previous one; if you think your data may be messed up, you should try
to repeat it before you write your report, so this is not something you
should be suggesting in your own report, although you should explain
that you did it if you felt it was necessary.)

3. Change technique. It may be that a different way of doing things,
using the same equipment, could (potentially) improve your results. If
so, this should be explained.

One example of this which may sound odd at first is to try and increase
the error and see what change is produced. For instance, if you neglected
the mass of something in an experiment, you could increase that mass
and then repeat the experiment. If the results do not change, then it is
unlikely that the original mass had a significant effect.

Question: How big a change in the quantity in question (such as the
mass just mentioned) should you try? Explain.

4. Make more types of observations. In some cases, monitoring certain
things during the experiment may ensure they do not affect the results.
This may be relevant in the case of “bounded uncertainties” above. It
should be possible with equipment available in the lab. (For instance, if
you are measuring the speed of sound, and the expected value is given
at 25◦ C, then you might explain a discrepancy by the temperature
being different. However, in this case, if you think the temperature
may have affected your results, then you should check a thermometer
to get the actual temperature during the experiment to suggest whether
or not that was likely to have caused an effect.)

5. Repeat the measurements to average the results. While it is always
good to repeat measurements, there is a law of diminishing returns.
(In other words, repeating measurements a few times will give you a
lot of information about how consistent your results are; repeating them
many more times will not tell you as much. That is why the standard
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deviation of the mean decreases as 1/
√
n, where n is the number of

measurements; as n gets bigger, the change happens more slowly.) In
fact, depending on the uncertainties involved, repetition at some point
is of no value. (That is when the standard deviation of the mean gets
smaller than the uncertainty in the individual measurements. At that
point you cannot improve without using a more precise instrument, no
matter how many times you repeat the experiment.)

6. Change equipment; this is a last resort. Since this in essence means
doing a different experiment, it is least desirable, and least relevant.
Your goal is to produce the best results possible with the equipment
available.

10.3.4 Ridiculous Errors

Certain errors crop up from time to time in peoples’ reports without any
justification. The point of your discussion is to support your results, placing
reasonable bounds on them, not to absolve yourself of responsibility for them.
Would you want to hire people who did not have faith in their own research?
Including errors merely to “pad” your report is not good; one realistic source
of error with justification is better than a page full of meaningless ones.
Following are some commonly occurring meaningless ones.

• “..human error...”

This is the most irritating statement you can make; you should have
read over the instructions beforehand until you knew what was re-
quired, and then performed the experiment to the best of your ability.
If you didn’t you were being unprofessional and are wasting the reader’s
time. After doing your calculations, you should be able to tell from your
results if they make sense. If not, you should go back and correct your
errors. (Note something like reaction time does not fall into this cat-
egory, because it is well-defined and can easily be measured. Vague,
undefined errors are the big no-no.)

• “..parallax...”

Parallax is the error you get from looking at a scale like a speedometer
or a clock from the side; the position of the hands will appear different
depending on your angle. With just about any scale I’ve seen, I’d be
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hard pressed to get an error of more than 5→ 10% from parallax (and
the latter very rarely). Even that would only occur if I was deliberately
trying to observe off-axis. Unless there is some reason that you cannot
eliminate it, don’t ascribe any significant error to it.

• “..component values may not have been as stated...”

Usually people say this about masses, etc. I’m tempted to say “Well,
DUH! ” but I won’t. Of course if given values are incorrect then cal-
culations will be in error, but unless you have evidence for a specific
value being wrong, (which should include some bounds on how wrong
it could be), then it is just wild speculation. (You may allow reason-
able uncertainties for these given values if you justify them.) Of course,
suggesting equipment was damaged or broken is in this same category.
If you understand what is going on, you should be able to tell if the
equipment is functioning correctly. If it isn’t, you should fix it or re-
place it (unless it’s not working because you are not using it correctly;
in that case, see “human error” above.) If it’s possible you have broken
it, you should bring this to the attention of the lab demonstrator, and
be very sure you know how to use it properly before trying again with
new equipment.

10.3.5 A Note on Human Errors

By now you are probably wondering why human error is so bad, even though
humans have to make judgments in experiments, which will certainly con-
tribute to uncertainties in the results. The problem is vague unspecified
“human error” which is more of a disclaimer than a real thoughtful expla-
nation. If you had to judge the time when an object stopped moving, for
instance, you can discuss the judgment required, but in that case you should
be able to determine concrete bounds for the uncertainties introduced, rather
than suggesting some vague idea that your results may be meaningless.

A rule of thumb to follow in deciding whether a particular type
of “human error” is valid is this; if it is something which you
may have done wrong, that is not valid. If it is a limitation which
anyone would have doing the experiment, then it is OK, provided
you bound it. (But don’t call it “human error”; be specific about
what judgment is involved.)
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10.4 Recap

When performing calculations,

• calculate the uncertainties in all results

• determine which measurements contributed most to the uncertainty in
the final results

• if possible, compare results to expectations to see if they agree within
uncertainties.

When writing a Discussion

• focus on quantities that contributed most to the uncertainties in the
final results

• suggest how uncertainties can be reduced, preferably without having to
change equipment used in the experiment
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Chapter 11

Exercise on Repeated
Measurements

11.1 Purpose

The purpose of the exercise is to measure your reaction time and to see how
it compares to that of your partner, as it is a source of uncertainty in many
experiments. You will attempt to measure it two different ways to see if they
are equivalent. In doing so, you will be introduced to important concepts
in statistics so that you can determine uncertainties in averages. You’ll see
how to determine the precision of a measuring instrument, and you will also
learn to show how two quantities compare by using a graph.

11.2 Introduction

Lots of experiments involve measurements which are repeated. Repeating
measurements allows the experimenter to be more accurate and precise in
conclusions drawn from the experiment. This exercise will illustrate how
to place bounds on a source of uncertainty which can be used in many ex-
periments. Many of these results can be illustrated with bar graphs for
comparison purposes. To illustrate many of the concepts involved, we’ll do
an experiment. The question we want to answer is:

What is a reasonable value for human reaction time?

This will give important insight into analyzing the “Measuring ‘g’” experi-
ment.
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11.3 Theory

There are actually three different topics in this lab:

1. human reaction time

2. comparing quantities graphically

3. analyzing data with repeated measurements

The first two will be discussed briefly here; the third will be discussed as part
of the Procedure section.

11.3.1 What is Human Reaction Time?

There are many different situations where human reaction time is important,
but there are several different types of reactions which may be considered,
and thus may have different times. Some of the possibilities are:

1. The time it takes to react to a random event: this includes situations
like hitting the brakes in a vehicle when a child runs onto the street.

2. The time it takes to react to an anticipated event: this includes situa-
tions like batting a baseball as it crosses home plate.

There are other related things to consider, such as how closely in time peo-
ple may synchronize their actions with other events and/or people, and the
possibility of changes to these times with practice.

Random events

Since one cannot anticipate a random event, by definition, there will be a
finite time required for a reaction after the event happens.

Fall 2016



11.3 Theory 91

Anticipated events

When an event is anticipated, “reaction” does not necessarily follow the
event. In the example of hitting a baseball, it is possible for a batter to swing
before the ball crosses the plate, (and in fact success requires the swing to
begin early), as easily as it is to swing after the ball crosses the plate.

Synchronization

In some situations, people must work together at a task, and thus they
must try to synchronize their actions. In this case, there is a limitation
in their ability to act together, and this also reflects a collective reaction
time. An example of this is musicians in an orchestra playing in time with
the conductor’s baton. A small time difference (either positive or negative)
between the motion of the baton and the playing of different instruments
turns “music” into “noise”.

Repeatability

No matter which situation occurs involving reaction time, it may be possible
for experience to lead to an improvement. Drivers, batters, and musicians
can all perform better as they develop focus and experience.

11.3.2 Precision Measure

The precision of an instrument refers to how close two measurements can be
and still be distinguished. Usually instruments with a large range don’t have
as much precision, (or, “are not as precise”), as instruments with a small
range.

Precision measure of a digital instrument

If you have a digital clock, which shows hours and minutes, how close can
two times be and still be different? Obviously, if they are at least 1 minute
apart, then they are different. What about a stopwatch that measures to
hundredths of seconds? Times that are at least one hundredth of a second
apart will be distinct. Since these times are much closer than the times which
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the digital clock can distinguish, we say the stopwatch is more precise than
the clock.

We call this smallest difference between two measurements which can be
distinguished the precision measure of an instrument. A smaller precision
measure indicates a more precise instrument.

For a digital instrument, the precision measure is the distance
between the value you measure and the next possible value. (If
the instrument “auto-ranges”, then the precision measure will
change when the range changes. Watch out for that.)

Data with unknown precision measure

Sometimes you may have to work with data from someone else where you
are not told the precision measure. In this case you may have to infer the
precision measure from the data.

point number X Y Z

1 25 0.86 3.6
2 30 0.92 4.2
3 25 0.68 2.7
4 5 0.74 5.1
...

...
...

...
N 10 0.80 1.9

Table 11.1: Data with unknown precision measure

Each of the columns in Table 11.1 hints at probable values for the preci-
sion measure for each of the three variables, X, Y , and Z.

• Note that all of the values in the X column end in either 0 or 5. This
suggests that 5 is the smallest increment between the values, and so we
can infer a precision measure of 5 for X.

• In the Y column, note that the least significant digit (or last digit) of
each value is an even number. This suggests that 0.02 is the smallest
increment between the values, and so we can infer a precision measure
of 0.02 for Y .
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• The values in the Z column don’t exhibit any obvious pattern, but they
all go to only one place after the decimal, so we can infer a precision
measure of 0.1 for Z.

11.3.3 Expressing Quantities with Uncertainties

Mathematically, the uncertainty in a quantity is usually expressed using the
symbol ∆. So in other words, if mass has the symbol m, then the symbol
∆m should be interpreted as “the uncertainty in m”. In that case you would
write

m±∆m

to mean the mass with its uncertainty. Uncertainty is always given as a

positive value, but it can be added or subtracted from the quantity to which
it belongs.

Comparing quantities with uncertainties

Quantities with uncertainties are said to agree if the ranges given by the
uncertainties for each overlap. For instance, if I estimated the length of
the athletic complex as “between 60 and 90 metres” which I could state as
“75±15 metres”, and I estimated the length of the science building as 100±20
metres, then I would say that the lengths of the two building agree since the
ranges overlap. In other words, they may be the same; without more careful
measurement I couldn’t say for sure that they are different.
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11.3.4 Displaying Comparisons Graphically

Sometimes you need to compare two or more values of one numerical variable,
(such as mass), where the values are differentiated by some non-numerical
parameter,1, where each of the numerical values has an uncertainty. For
instance, in an election poll, you might show percentage of voters favouring
each party, (a numerical variable), broken down by party, (a non-numerical
parameter). In this case, probably the easiest way to view the comparison is
by a bar graph, where each bar is for a different value of the non-numeric
parameter. 2 Such data are shown in Table 11.2. Note that along with the
percent support for each party is the uncertainty in the percentage.

Party
Support Conservative NDP Liberal Green

Percent 32 25 10 4
∆% 5 4 2 1

Table 11.2: Mythical Poll Results

From Table 11.2, it’s clear that

Conservative Support = 32± 5%

and
NDP Support = 25± 4%

These two quantities agree within experimental uncertainty, since both in-
clude the range from 27%→ 29%. We can show this comparison graphically
by using a stacked bar graph.

To turn this into a stacked bar graph3, we need to modify the data slightly,
by making a third row, which is a duplicate of the second, and changing the
items in the first row by subtracting the values from the second row. This is
shown in Figure 11.3. In this way, the minimum value for each row, (i.e. the
nominal value minus the uncertainty), is given by the top of the lowest bar,

1In statistics, these are called “categorical variables”, since they divide data into
categories, rather than distinguish by a numerical value.

2If the numerical values are percentages, a pie chart may be more useful.
3This may also be called a stacked column graph, depending on whether the bars are

drawn horizontally or vertically. The principle is the same.
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the nominal value is given by the top of the middle bar, and the maximum
value, (i.e. the nominal value plus the uncertainty), is given by the top of the
top bar. The modified data can then be plotted to show how the different

Party
Support Conservative NDP Liberal Green

Percent - ∆% 27 21 8 3
∆% 5 4 2 1
∆% 5 4 2 1

Table 11.3: Modified Data

quantities compare.

�	
minimum

�) nominal

� maximum

Cons. NDP Lib. Green

Figure 11.1: Comparing items

From Figure 11.1 we can see that support for Conservatives and NDP is
the same, within experimental uncertainties, since a horizontal line can be
drawn which passes through the uncertainty range for both. For any other
combination, this is not the case.
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minimum for Lib.
maximum for Green

Cons. NDP Lib. Green

Figure 11.2: Range of overlap

Any line between the two red ones shown in Figure 11.2 crosses the error
bars of both the Conservatives and the NDP, so that they are equal within
experimental uncertainty. (Note that the top line of the bar graph is at 29,
and the bottom one is at 27. This is the same range of values that was
calculated earlier.)

If the values agree within experimental uncertainty, then they are
the same.

11.4 Procedure

Much of this exercise can be done outside the lab, (except for
the parts requiring the “in-lab” measurements of reaction time
or your lab partner), using the reaction timer indicated on the
website. In exercises like this, you may do as much as you can on
your own. Then bring your answers to the in-lab questions and
completed in-lab tasks to the lab.
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11.4.1 Preparation (before the lab)

Most experiments and exercises will have requirements which must be com-
pleted before the lab and then presented at the beginning of the lab period.

11.4.2 Investigation (in the lab)

Reality check: Without doing any calculations, but using your
head: Would you expect your reaction times to be in the ballpark
of 1 second, 10 seconds, 0.1 second, or 0.01 second?

In-lab Questions

In this exercise, the in-lab questions are included with each part. Often they
will be collected together at the end of the experiment or exercise.

Answer in-lab questions in a sentence or two. Be sure to state
any data or results to back up your answer. Don’t assume the
reader knows the question or has access to your data. Make your
responses complete and self-contained.

In-lab Tasks

Whenever you are asked to copy information into the template,
you may use the appropriate computer spreadsheet(s) instead so
long as you can show them to the IA who can check them off.

Data collection

There are going to be times in the lab when there is more data than there are
data collection stations, therefore you will rotate through the stations when-
ever they become available. The order of collecting data does not matter.
Make sure you record the data in the correct table in the template.
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In-lab anticipated event measurement

1. Do several (at least 5) trials of the anticipated event test and record the
times in the “self” column of Table 11.5. Negative times are educated
guesses and should be included.

2. Get the reaction times for anticipated events from your partner. Put
them in the “partner” column of Table 11.5.

3. Fill in the information about the instrument you used to measure re-
action time; include specifically

(a) the name

(b) the units

(c) the precision measure

4. Calculate the average of the values in each column and fill it in.

5. Find the value in each column that is in the middle; (i.e. two values
are as big or bigger and two are as small or smaller), and add this
information to the row labeled “median value”.

6. Identify the largest and the smallest values in each column and add this
information to the rows identified as “maximum value” and “minimum
value”.

7. Find the range of the values in each column, by taking the difference
between the maximum and minimum values. Add this information to
the table.

8. In the last row, put in the value of the range divided by 4.

IT1: Fill in Table 11.5 with the information required above.
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Figure 11.3: Sample of data in Table 11.5

Mean and median

The mean and median are two useful quantities that can be calculated from a
set of repeated measurements. The “middle value” you found is the median.
It has the same number of values above and below. (If you have an even
number of measurements, the median is the average of the two in the middle.)
The average value you calculated is also known as the mean. (“mean” =
“average”) For normally distributed data, the median should be a reasonable
approximation of the mean. In other words, they will probably be the same
to one or two significant figures.

For many sets of data, the mean and the median will be similar.
So, since you can find the median with no calculations, it is a
simple way to estimate the average.

IQ1: If several trials produced the exact same measurement for reaction
time, such as shown in Table 11.4, is it likely that the next digit would be
the same if an instrument with one more decimal place were used? Are there
any two values in one of your sets of data which are the same? If yes, what
are they?
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Trial # time (s)
1 0.3
2 0.3
3 0.3
4 0.3
5 0.3

Table 11.4: Sample reaction times measured with a different instrument

Range of the data

Suppose you have five measurements of reaction time from one person, such
as in your sample. Probably you will find that the five reaction times are
not all the same. Because of this, it makes comparing times from different
people a bit tricky; you have to know what range of values are possible for
each person.

IT2: Copy the appropriate results from Table 11.5 into Table 11.7.

Summarizing the information The median and the range/4 give us an
easy way to summarize the information in the table. We could write it as
follows:

range of reaction times ≈ median value± range/4

With only 5 points, this may not seem much shorter than simply stating all
five values, but if we had 10 (or 100!) measurements, presenting the results
this way would be much more concise that stating all of the values.
Look at the median, and the value calculated for the range/4. Most of the
values should fall between the median minus the range/4 and the median
plus the range/4. Did this occur? In other words, did at least 3 values for
each of you fall in the range of median± range/4 ?

Figure 11.4: Sample of data in Table 11.7
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IT3: Fill in the last two rows of Table 11.7. This is to allow comparing you
and your partner for this method.

IQ2: State the approximate range of in-lab anticipated event reaction times
for you and your partner using the form

range of reaction times ≈ median value± range/4

Based on the times, does it seem like you and your partner are getting similar
results for reaction time? In other words, do the two ranges of times for you
and your partner overlap?

Online anticipated event measurement

Now look at the data for anticipated events using the online method.

1. Do several (at least 5) trials of the anticipated event test and record
the times in the “self” column of Table 11.6.

2. Get the reaction times for anticipated events from your partner. Put
them in the “partner” column of Table 11.6.

Negative times are educated guesses and should be included.

3. Fill in the information about the instrument you used to measure re-
action time; include specifically

(a) the name

(b) the units

(c) the precision measure

4. Calculate the average of the values in each column and fill it in.

IT4: Fill in Table 11.6 with the information required above.
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Synchronization

This part must be done using the reaction timer on the website.

Usually synchronization involves one person being the initiator and the other
being the responder (like the conductor and a musician).

1. Figure out a method that allows you to be synchronized with your
partner.

2. Do several trials of the synchronization test and record the times in
Table 11.8.

3. Repeat and reverse the roles of “initiator” and “responder”.

IT5: Fill in Table 11.8. Don’t worry about the greyed out rows now. Did
your results fit with your “reality check” at the beginning of the “Investiga-
tion” section?

IQ3: How did your synchronization times compare to your anticipated
times? Did they overlap, or was one greater than the other? What does
this suggest about how easy it is to synchronize compared to responding to
anticipated events individually?

IT6: Identify on the template which person (i.e. you or your partner) is
person ‘A’ and which is person ‘B’.

Comparing data sets using statistics

In question IQ2 above, all we could ask was whether it looked like the reaction
times were different, since we had no way of determining how much variation
would be small enough to ignore. In statistics, there is a quantity which can
be calculated for an average to determine whether some other measurement
is far enough away that it should be considered “different”. That quantity
is called the standard deviation, and it has the following properties:

• About 2/3 of the measurements should fall between the average of your
measurements minus one standard deviation and the average plus one
standard deviation.
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• About 95% of the measurements should fall between the average of your
measurements minus two standard deviations and the average plus two
standard deviations.

• To turn the previous point around, the standard deviation will be about
1/4 of the difference between the biggest and smallest measurements.
(It will actually be a little less than 1/4 of the difference.)

Calculating the standard deviation Table 11.9 is set up to help you
calculate the standard deviation for the data for one of the sets of times you
chose. (Figure 11.5 shows this table with sample data.)

The standard deviation is calculated by

standard deviation =

√∑
(time− average)2

n− 1

where n is the number of data points; in this case, 5.

1. Copy the data from Table 11.5 to fill in the first column and calculate
the average. Don’t round the average off!

2. Subtract the average from each time to fill in the second column.

3. Square the second column values to fill in the third column. Don’t
round the numbers off! Always keep at least two significant figures.

4. Add up the third column values and fill in the appropriate cell.

5. Use the formula in the table to calculate σ, the standard deviation.
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Figure 11.5: Sample of data in Table 11.9

IT7: Fill in your results in Table 11.9. Don’t worry about the last row for
now.

Now you can check the three points listed above to see if they apply in your
case.

1. Highlight the rows in the table where the time is within (average±σ).
That should be about 2/3 of the values.

2. Highlight the rows in the table where the time is within (average±2σ).
That should be about 95% of the values. Are there any that are outside
of this range?
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IQ4: State the value you calculated for the standard deviation, as well as the
previously calculated value of range/4 from Table 11.5. Was your calculated
value for the standard deviation similar to the range/4 ; i.e. was the smaller
of the two more than half of the larger of the two? (If they are not similar,
check to see if you calculated σ correctly.)

Using the online statistical calculator There is a calculator online to
do these statistical calculations. Use it to check your results.

IT8: Use the statistical calculator to verify that your values for the standard
deviation and the standard deviation of the mean are correct in Table 11.9.
Write in the calculator answers beside the cells where you calculated the re-
sults yourself.

IT9: Repeat the previous process to fill in Table 11.10 with your partner’s
data from Table 11.5. (Again, don’t worry about the last row.) You can
use the statistical calculator or do the calculations by hand if you
prefer. Whichever you do, just leave the extra columns blank.

Comparing averages: step one The reason for calculating the stan-
dard deviation is so that we can compare different averages of similar data
sets. In our case, we want to compare the average anticipated event reaction
times for the two partners. We’re almost ready to do that. If we knew we
had a representative sample of times from each partner that we used for our
average, we’d be in great shape. However, we can’t be sure our samples
are “representative”. (For instance, you may have taken a few tries to get
familiar with the test.) If we have a lot of times from one person, than the
sample will be more representative than if we only have a few. What we
need is some quantity that reflects that. The quantity that we’re looking for
is called the standard deviation of the mean, or the standard error of
the mean, and is calculated by

standard deviation of the mean =
standard deviation√

n

The usual symbol used for the standard deviation of the mean is α, so this
is usually written as

α =
σ√
n

(11.1)
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Basically, the standard deviation of the mean is a measure of the range
around the mean (i.e. average) from our sample which should contain the
average of a “representative” sample.

Since the standard deviation of the mean has
√
n in the denominator, it

will get smaller as the amount of data gets larger, which is what we’d expect.
(A larger sample should, by definition, be more representative.)

The standard deviation indicates how far the data values vary
from each other. The standard deviation of the mean indi-
cates how far the average is expected to vary from the average
from a very large set of measurements.

IT10: Now fill in the last rows of Table 11.9 and Table 11.10.

Comparing averages: step two This part may sound pretty obvious,
but it’s important. We only have a hope of comparing two measurements
if the instrument we used to measure them is precise enough to show a
difference! For example, if we used a timer that only weighed to the nearest
tenth of a second, all of the times might look the same. So to determine
the uncertainty in the average of several measurements, we need to consider
both the standard deviation of the mean and the precision measure of the
instrument. This leads to the following rule:

The uncertainty in the average of several measurements is the
larger of the standard deviation of the mean and the preci-
sion measure.

(If you use the statistical calculator, note that it does this step automati-
cally; i.e. if you have typed in the precision measure, it will calculate the
uncertainty in the average.)

So, now we can be precise and write

reaction time = t̄±∆t̄

Whenever you calculate the uncertainty in a final result, round
the uncertainty to one significant figure. Then round the quantity
to the same decimal place, so the last digit in the quantity is in
the same decimal place as the uncertainty.

Fall 2016



11.4 Procedure 107

Figure 11.6: Sample of data in Table 11.11

IT11: Complete Table 11.11. Don’t worry about the last row for now.

Comparing the times

Now that you’ve determined the uncertainty in the average for the two part-
ners, you can state whether or not the averages agree within their uncertain-
ties, or in this case, whether the average anticipated event reaction time for
you and your partner were the same or not.

Mathematically, if two quantities a and b, with uncertainties ∆a
and ∆b are compared, they can be considered to agree within
their uncertainties if

|a− b| ≤ ∆a+ ∆b (11.2)

A constant given, with no uncertainty given, usually can be as-
sumed to have an uncertainty of zero.

For example, suppose we have two sets of times:

TA = 320± 50ms

and
TB = 240± 60ms

Do they agree?

Clearly, the two ranges of values overlap; i.e. 270-300 ms is common to both,
so we would say they agree. Mathematically,

TA − TB = 320− 240 = 70ms
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∆TA + ∆TB = 50 + 60 = 110ms

Since

|TA − TB| = 70ms ≤ ∆TA + ∆TB = 110ms

they agree. (The absolute value sign covers the case where TB and TA are
interchanged.)

IT12: Fill in the last row of Table 11.11.

IQ5: If any two reaction times agreed, would that mean they are identical?
State both you and your partner’s times with their uncertainties. Based on
your calculations, do the average times for you and your partner agree or
not?

How many trials should you use? Since all of our statements about
whether the times are the same or not depend on the the number of times
in the sample we collected, is there any way of knowing whether we have a
sufficiently large sample or whether we should obtain more?

It turns out that we can measure “enough” times to be confident. In fact,
“enough” may not be that many in some cases. Look again at Equation 11.1.
Since α will get smaller as we take more measurements, it seems like there’s
no limit to the number of useful measurements. However, remember that
“The uncertainty in the average of several measurements is the larger of the
standard deviation of the mean and the precision measure.” Since α will keep
getting smaller as more measurements are taken, there will always come a
point where it will be smaller than the precision measure. After that point,
the uncertainty will stay constant, no matter how many more measurements
are taken, and so taking more measurements becomes mostly pointless.

The optimum number of measurements has been taken when the
standard deviation of the mean and the precision measure are
equal.

Once you have a few measurements, you can calculate σ and then use it to
determine how many measurements would be optimal by rearranging Equa-
tion 11.3 to solve for Noptimal.

precision measure =
σ√

Noptimal

(11.3)
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Since the standard deviation of the mean gets smaller as more
measurements are taken, if the precision measure is greater than
the standard deviation of the mean then no more measurements
are needed.

IQ6: For one of the sets of times, determine the optimum number of trials
to take. (Include your calculations.) Would this number of trials be feasible
to collect and use in the lab? Explain. (Hint: If pm > α, (the precision
measure is greater than the standard deviation of the mean), then Noptimal

will be less than what you already have. If pm < α, then Noptimal will be
greater.)

(If you use the statistical calculator, note that it does this step automatically
as well; i.e. if you have typed in the precision measure, it will calculate the
optimal number of measurements.)

Bonus: Random events If you have time, you can do this in the lab. If
not, you can do it using the online reaction time tester.

1. Do several trials of the random event test and record the times in
Table 11.15. Any negative times are basically “wild guesses” and should
be ignored.

2. Repeat with your partner.

11.4.3 Analysis (after the lab)

Post-lab Discussion Questions

Read over each of the inlab and postlab questions, and decide where the
answers should appear in your lab report. (Note that some questions may
have parts of the answers in each section.) Fill in the results in Table 11.14.

Answer the following questions in paragraph form, with each in-
dividual question answer underlined or highlighted, At the begin-
ning of each question put the question number is a super-script.
The goal is to have a flow to the whole paragraph, rather than
to have it appear as a series of statements of unrelated facts. Be
sure to include your numerical results to explain your answers.
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Comparing the two methods (inlab and online)

1. Use the statistical calculator to complete Table 11.12. This is to allow
comparing both methods for one person, i.e you.

Q1: Did your times agree for the two methods, inlab and online? What
would it mean if your times didn’t agree for the different methods? Does
that mean they are measuring different things, or could there be anything
else that could account for the difference?

Checking the validity of the approximations Let’s take a quick look
back to see how much the “simple” results look like the “statistical” results.

1. Complete Table 11.13.

Figure 11.7: Sample of data in Table 11.13

Q2: Based on your results in Table 11.13, did the median turn out to be
a decent approximation to the average? Did the range/4 turn out to be a
decent approximation to the standard deviation?

Repeatability
This applies to all of the previous situations.

1. Look at each of the sets of data and note if the times are changing
according to a pattern.
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Q3: Was there any indication that something was changing systematically as
the trials went on? (For instance, were times getting shorter, longer, or stay-
ing the same?) What insight does this give you about doing an experiment
such as this?

Q4: Did the in-lab reaction times for anticipated events for you and your
partner agree within experimental uncertainty?

Q5: Determine the optimum number of trials for the other method ; (i.e.
the online measurement for anticipated events). Make sure to include your
calculations with your answer. Did the optimal number of times depend on
the device you used? Explain.

Q6: As in Figure 11.1, sketch a stacked bar graph to illustrate graphically
whether the anticipated event reaction times for you and your partner agree
or not. If they do, draw a horizontal line which shows that they agree. If
they don’t, draw a horizontal line that shows that they don’t agree (i.e. one
that falls below the higher value and above the lower one.). In this case, the
partner name is a categorical variable.

Q7: Was either person’s anticipated event reaction time equal to zero within
experimental uncertainty by any method?

Q8: Did the two synchronization times for the two situations agree within
experimental uncertainty?

Q9: Was either synchronization time equal to zero within experimental un-
certainty? How did your synchronization times compare to your anticipated
times?

Q10: Did your in-lab and online reaction times for anticipated events agree
within experimental uncertainty? What does this suggest about how reaction
times measured in the lab relate to the speed of your reactions when you are
actually performing a task?

11.5 Bonus

Bonuses can be done in or outside of lab time depending on what equipment
is needed to do the bonus questions. The bonus questions that are completed
outside of lab time are to be handed in with the post-lab questions.
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11.5.1 Bonus: Random Event Reaction Time

Using data collected earlier, or using the online reaction time tester, answer
the following. (Be sure to include a copy of your data.)

Did the two reaction times for random events for the two people agree within
experimental uncertainty?

Was either person’s reaction time for random events equal to zero within
experimental uncertainty?

11.5.2 Bonus: Other Factors to Study

Choose any one of the following events to test, depending on the equipment
available to you:

1. See if it matters whether a button is pushed or released to stop the
time.

2. See if the time taken between repetitions makes a difference.

3. Determine whether the mode of stimulus matters (e.g. sight versus
sound).

4. Determine whether practice does indeed make perfect by doing many
repetitions of one test. You need to do at least 30 repetitions to reach
a valid conclusion.

5. Figure out whether the length of the sequence for a random event
matters.

6. Figure out whether the speed of the sequence for a random event mat-
ters. (In other words, if you change the delay time between the steps
of the sequence, does it make a difference?)

7. See if you can find a better method of synchronization by testing dif-
ferent approaches.

8. In the lab, check to see whether any person’s reaction times are signif-
icantly better or worse for the random event.

9. In the lab, check to see whether any group’s reaction times are signifi-
cantly better or worse for a synchronized event.
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10. Check to see whether a student’s musical ability influences synchro-
nization.

11. Check to see whether a student’s athletic ability influences synchro-
nization.

12. (For musicians) Given the suggested tempo and time signature of a
piece of music, determine the maximum synchronization delay allow-
able for a performance.

11.5.3 Bonus: Using Calculator Built-in Functions

Note:If you don’t have the manufacturer’s manual for your calculator you
can check the links on the lab web page.

If your calculator has built–in functions to calculate averages and stan-
dard deviations, test them out by using your data. Does your calculator
calculate the correct value for σ, the standard deviation? If not, how can
you correct it?

Write out the instructions needed to do this on your calculator. Include
how to clear an old data set before entering a new one. For each step in-
clude the calculator’s display. (Record the make and model of calculator you
have.) After you have verified the operation of the statistical functions
on your calculator, you can use these functions whenever a lab task requires
them.

11.6 Recap

By the end of this exercise, you should understand the following terms, and
be able to determine:

• precision measure of a digital instrument

• median of a set of values

• range of a set of values

You should also be able to calculate:

• mean; the median is a good estimate of the mean (average)
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• standard deviation; the range/4 is a good estimate of the standard de-
viation

• standard deviation of the mean

• uncertainty in the average

• optimal number of measurements

11.7 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 6 35
Post-lab Questions 10 35

Pre-lab Tasks 0 0
In-lab Tasks 12 30
Post-lab Tasks 0 0

Bonus 5
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11.8 Template

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:

Person A name:
Person B name:

Instrument
name

(or reference)
units

precision
measure
Trial # self partner

1
2
3
4
5

average
median value

minimum value
maximum value

range
range/4

Table 11.5: In-lab anticipated event reaction test
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Instrument
name

(or reference)
units

precision
measure
Trial # self partner

1
2
3
4
5

average

Table 11.6: Other (online) method for measuring anticipated event reaction
time

Instrument
name

(or reference)
units

precision measure
person self partner
average

median value
range/4

median ±range/4
≥ 3 values within median ±range/4 ?

self and partner overlap? (y/n)

Table 11.7: Summary of results for first (in-lab) method
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Instrument
name

(or reference)
units

precision
measure

Responder
trial Person A Person B
i tA tB

1
2
3
4
5

t̄
σ
α

∆ (t̄)
agree?

Table 11.8: Synchronization data
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Instrument
name

(or reference)
units

precision
measure
Trial # time time-average

i ti ti − t̄ (ti − t̄)2

1
2
3
4
5

calculations online calculator

average t̄

sum
∑

(ti − t̄)2 N/A

standard deviation σ =
√∑

(ti−t̄)2
n−1

std. dev. of the mean α = σ√
n

Table 11.9: Standard deviation for self using first (in-lab) method
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Instrument
name

(or reference)
units

precision
measure
Trial # time time - average

i ti ti − t̄ (ti − t̄)2

1
2
3
4
5

calculations online calculator

average t̄

sum
∑

(ti − t̄)2 N/A

standard deviation σ =
√∑

(ti−t̄)2
n−1

std. dev. of the mean α = σ√
n

Table 11.10: Standard deviation for partner using first (in-lab) method
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Instrument
name

(or reference)
units

precision measure
person self partner

average ( t̄ )
standard deviation (σ)

std. deviation of the mean (α)
uncertainty in average ( ∆t̄ )

t̄±∆t̄
agree? (y/n)

Table 11.11: Comparing two partners (in-lab method)

Anticipated event reaction time
units

person self
method in-lab online

precision measure
average (t̄)

σ
α

∆ (t̄)
agree? (y/n)

Table 11.12: Summary of results for two methods
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Anticipated event reaction time
units

method in-lab
person self partner
median

t̄
0.5 ≤ ratio ≤ 2 ?

range/4
σ

0.5 ≤ ratio ≤ 2 ?

Table 11.13: Summary of results for approximate and precise calculations
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Where to answer
Question Discussion Conclusions
number (y/n) (y/n)

In-lab

Post-lab

Hints
“think” “agree”

“suggest” “equal”
“explain” “do (did, does) ”

“how” “significantly different”
“why” “support”
“what” “verify”

Table 11.14: Lab Report Organization
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Instrument
name

(or reference)
units

precision
measure

trial Person A Person B
i tA tB

1
2
3
4
5

t̄
σ
α

∆ (t̄)
agree?

Table 11.15: Bonus Question data: Random events
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Chapter 15

Measuring ‘g’

15.1 Purpose

The purpose of this experiment is to measure the acceleration due to gravity
and to see if the effects of air resistance can be observed by dropping various
balls and recording fall times.

15.2 Introduction

This experiment will introduce the concept of using uncertainties to compare
numbers.

Actually this experiment is really intended to illustrate the pro-
cess you will go through in each lab. The physics involved is
extremely basic, so you should be able to focus on how to ana-
lyze the results and prepare the report.

This lab will actually be broken into parts, so you will spend several weeks
to produce the report. After you know how to do this, you will be able to
produce reports much more quickly.

The schedule will be somewhat like this:

• Collect data, including uncertainties in the raw data.

• Calculate numerical results, including uncertainties.

• Interpret the results and draw quantitative and qualitative conclusions.
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• Learn how to write up “Discussion of Uncertainties” and “Conclusions”
in your report.

After that, you will hand in the lab.

15.3 Theory

15.3.1 Physics Behind This Experiment

For a body falling from rest under the influence of gravity, assuming no air
resistance, the height fallen in time t will be given by

h =
1

2
gt2 (15.1)

15.3.2 Uncertainties in measurement

Much of the “theory” about uncertainties for this experiment has been cov-
ered in Chapter 7; “Measurement and Uncertainties”.

Summary of rules for uncertainties

Uncertainties for all Measurements Make sure that any value you
record has an uncertainty. You should record the precision measure of the
instrument used. Also, list any other factors which may increase the actual
uncertainty. Give your rationale for the size of the realistic uncertainty.

Expressing Quantities with Uncertainties Mathematically, the uncer-
tainty in a quantity is usually expressed using the symbol ∆. So in other
words, if mass has the symbol m, then the symbol ∆m should be interpreted
as “the uncertainty in m”. In that case you would write

m±∆m

to mean the mass with its uncertainty. Uncertainty is always given as a

positive value, but it can be added or subtracted from the quantity to which
it belongs.

Fall 2016



15.3 Theory 127

Precision measure The precision of an instrument refers to how close
two measurements can be and still be distinguished. Usually instruments
with a large range don’t have as much precision, (or, “are not as precise”),
as instruments with a small range.

For a digital instrument, the precision measure is the distance
between the value you measure and the next possible value. (If
the instrument “auto-ranges”, then the precision measure will
change when the range changes. Watch out for that.)

The precision measure of an analog instrument would be one half
of the smallest spacing on the scale. So if the scale has spacings
1 unit apart, the precision measure would be 0.5 units.

Effective Uncertainties In a situation where the precision measure isn’t
really the limitation on the precision of a measurement, we estimate a real-
istic or effective uncertainty based on whatever sort of limits make sense.

Comparing Quantities with Uncertainties Quantities with uncertain-
ties are said to agree if the ranges given by the uncertainties for each overlap.

If the values agree within experimental uncertainty, then they are
the same.

15.3.3 About Experimentation in General

In order to learn anything useful from an experiment, it is critical to collect
meaningful data.

There are a few things to consider:

1. Data must be correct. (This means values must be recorded accurately,
along with their corresponding units.)

2. Data must be consistent. (Where you have repeated measurements,
they should be similar.)

3. Data must be reproducible. (If you or someone else were to come back
and do this later, the data should be similar to what you got the first
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time. This is more determined by the clarity of your note-taking than
the actual data recorded.)

Collaboration

If you are working with a partner, it is important that you both understand
ahead of time what has to be done. It is easy to overlook details, but if
two people are both looking at the material then it’s much less likely that
something important will be missed.

Keep in mind that there may be some individual quantities which
must be known when doing an experiment which can change with
time. If you do not record them at the time, you may have to
redo the experiment completely. Make sure you record all the
variables that could influence the data. If you don’t do this you
may end up having to redo the entire experiment.

Technique

How you collect the data may have a huge effect on the usefulness of the
data. Always try to use the best method of collecting data.

Preliminary Calculations

Before you leave the lab you need to do preliminary calculations of important
results to see if they are in the right ballpark. This should prevent you from
making scale errors (such as using wrong units) and forgetting to record
time-sensitive values as mentioned above.

Well-Documented Raw Data

If your raw data are too messy or incomplete for you to understand later,
you will have to redo the experiment. Always record

• Date

• Experimenters’ names and student ID numbers

• Lab section
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• Experiment name

• For each type of measurement,

– Name of device used

– Precision measure

– Zero error (if applicable)

– Other factors in measurement making realistic uncertainty bigger
than the precision measure, and bound on uncertainty.

– Notes about how the measurement was taken or defined.

• For each table of data,

– Title

– Number

– Units for each column

– Uncertainties for each column; (If uncertainties change for data
values in a column, make a column for the uncertainties.)

• For each question asked in the manual,

– Question number

– Answer

In the labs and exercises, questions are often grouped together to
try and develop a “big picture” of what is going on, and so the goal
is to write explanations which address a group of questions, rather
than handling each one individually. This is the approach which
you are to take in writing your “Discussion of Uncertainties”
in a lab. Remember that wherever possible, you want to answer
questions from your experimental observations rather than from
theories.
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15.4 Procedure

15.4.1 Preparation (before the lab)

Pre-lab Tasks

PT1: Print off this section of the lab manual as it will not be provided.
Make sure you also print off the “template” sheet of the spreadsheet for this
experiment and bring it to the lab. (Alternatively, bring your laptop with
with both the lab manual and the spreadsheet).

PT2: Look up the density of steel. Fill this value in Tables 15.1 and 15.2
and record the reference for it.

PT3: Look up the diameter and mass of a regulation ping pong (table tennis)
ball. Use these values to claculate the effective density of a ping pong ball.
Fill these values in Tables 15.1 and 15.2 and record the references for them.

PT4: Rearrange Equation 15.1 to solve for g. In other words, complete the
following:

g =

Copy the result into Table 15.3.

15.4.2 Investigation (in the lab)

Apparatus

• stopwatch

• bucket

• dense ball

• less dense ball

• tape measure
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Method

Note about groups of 3: There is not really a difference between the roles
in a group of 3 and a group of two. For the purpose of the experiment,
anyone who is not the “dropper” is the “gofer”; the important thing to note
is whether the person dropping the ball is the one timing it. Anyone not
dropping the ball is functionally equivalent, regardless of which floor he or
she is on.

While you are getting the bucket lined up, practice drops with a ping pong
ball. Once you have things aligned, you should switch to the dense ball for
the first set of measurements.

1. Measure h. Make sure you know which scale on the tape measure has
the correct units!

2. Use the denser ball, which is relatively unaffected by friction, and time
one drop. Repeat this a few times to see how consistent your times are.

3. Once you have some consistency in your times, do a calculation to see
whether or not this gives you a reasonable result for g.

Note: Although this is not usually explicit when doing a lab,
whenever you collect data you should have a general idea of what
you expect the data to look like. If the data you are getting are
not in the expected ballpark, stop and try and figure out why
not. Don’t wait until you get home to check unexpected (and
potentially incorrect) data.

4. Drop the ball several (i.e. at least 5) times and record the fall times as
recorded by both the dropper and the gofer in Table 15.5. Calculate
the average fall time.

5. Switch position, and repeat the previous steps.

6. Calculate values for g, based on the average times. Determine which
of the methods used gave the best results. Try to figure out why this
might be the case. Note that “best” has to consider both accuracy and
consistency of data.
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Figure 15.1: Section of Table 15.5

7. Use the “preferred method” to collect data for the ping pong ball, which
should be more affected by friction. Drop the ball several times and
record the fall times as before.

8. Average the values for t, and calculate g for the second type of ball.
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In-lab Tasks

Wherever you are asked to copy information into the template,
you may use the appropriate spreadsheet(s) instead as long as
you get them checked off. That means you can have a printout
of the spreadsheet, or fill it in on your laptop in the lab.

IT1: Identify on the template which person (i.e. you or your partner) is per-
son ‘A’ and which is person ‘B’. It would be wise to use the same designation
of Person ‘A’ and Person ‘B’ as you did when determining your reaction
time.

Figure 15.2: Section of template for IT1

IT2: Fill in all of the information in Table 15.5.

Figure 15.3: Section of Table 15.5 for IT2
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IT3: Record at least 2 experimental factors leading to uncertainty in h
other than the one given. Provide at least 2 experimental factors other than
reaction time leading to uncertainty in t. Record these in Table 15.4. Also
record bounds and indicate whether these sources of uncertainty are random
or systematic.

Figure 15.4: Section of template for IT3
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In-lab Questions

You may never see the lab equipment set up this way again, so make sure
before leaving the lab that you have completed your determination of uncer-
tainties in measurements and other factors affecting uncertainties.

IQ1: What is the realistic uncertainty in h, and what experimental factor(s)
cause this uncertainty? This value should be one you feel you can defend as
being neither extremely high nor extremely low. (There may be more than
one contributing factor.)

IQ2: Was the technique which produced the most accurate time also the
one which produced the most precise (i.e. consistent) time? How difficult is
it to determine the “best” technique if the most accurate one is not the most
precise one?

IQ3: Write up a Title and a Purpose for this experiment, which are more
appropriate than the ones given here. Be sure to include both quantitative
goals and qualitative ones in the “Purpose”.

IT4: Read over each of the inlab and postlab questions, and decide where
the answers should appear in your lab report. (Note that some questions may
have parts of the answers in each section.) Fill in the results in Table 15.6.

Fall 2016



136 Measuring ‘g’

15.4.3 Analysis (after the lab)

Before learning how to analyze uncertainties, there may be few obvious con-
clusions to be drawn from any experiment, including this one. Some of the
following steps will be completed in later exercises.

1. Calculate the standard deviation and standard deviation of the mean
for the sets of times for each type of ball, and then determine the
uncertainty in t̄ for each data set.

2. Given the values for the precision measure and σ, determine the opti-
mum number of measurements for both balls using the preferred tech-
nique.

3. Determine the formula for the uncertainty in g, given the uncertainties
in h and t̄.

4. Calculate the uncertainty in your values of g using the uncertainties
determined above.

Post-lab Discussion Questions

Answers to the following questions will form the basis of the Dis-
cussion and Conclusions sections of your lab report. Write these
sections in paragraph form, with each individual answer under-
lined or highlighted. At the beginning of each question put the
question number in super-script. The goal is to have a flow to
the whole section, rather than to have the section appear as a
series of statements of unrelated facts. Be sure to include your
numerical results to explain your answers.

Q1: If a person delays starting the watch after the ball is dropped, but does
not delay stopping the watch when the ball hits the ground, what will be
the effect on the average time? What will be the effect on the value of g
calculated?

Q2: If a person does not delay starting the watch when the ball is dropped,
but delays stopping the watch after the ball hits the ground, what will be
the effect on the average time? What will be the effect on the value of g
calculated?
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Q3: If a person delays starting the watch after the ball is dropped and delays
stopping the watch after the ball hits the ground, what will be the effect on
the average time? What will be the effect on the value of g calculated?

Q4: Are any of your resulting values for g higher than expected? What could
explain that? What bounds does that give on factors like reaction time?
Explain. (Hint: Look at your answers to the three previous questions.)

Q5: Measurements of reaction time (random, anticipated, or synchroniza-
tion) will apply differently to the droppers and gofers. Which of the above
situations would apply to the dropper and which would apply to the gofer?
Was there any correlation between the reaction times you measured and the
variation in times you had when dropping the ball? In other words, did your
measurements of reaction time give any useful insight into the experiment?

Q6: Were the times given by different methods for the same type of ball sig-
nificantly different? In other words, did they agree within their uncertainties
or not? (Include your actual calculated values in your explanation.)

Q7: Would a more precise stop watch reduce the uncertainty in t or not?
Explain.(Note: Timing technique may help, but that’s a different matter!!)

Q8: Calculate the optimal number of measurements need for each type of
ball. Based on this calculation, would timing more drops help in reducing
the uncertainty of the average times? In this experiment would it be feasible
to take the optimal number of measurements?

Q9: Were the times given by the preferred method for the first ball and the
second ball significantly different? (Include your actual calculated values in
your explanation.)

Q10: Would a more precise device to measure h reduce the uncertainty in g
or not? Explain.

Q11: Do either of the values for g determined using the preferred technique
agree with the accepted value? Explain. (This question can be answered
definitively based on your uncertainties.)

Remember that values agree if the difference between them is
less than the sum of their uncertainties. If they do not agree
then you should calculate the percent difference between them.
(DON’T calculate the percent difference if they agree!! That’s
what “agreement” is all about!!)
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Q12: Do the two different values for g using the preferred technique suggest
friction is significant or not? Explain. (As with the previous question, this
can answered definitively based on your uncertainties.)

15.5 Recap

By the time you have finished this lab, you should know how to:

• determine the precision measure of an analog instrument

• identify experimental factors that create effective uncertainties in mea-
surements and place bounds on those uncertainties

By the time you have finished this lab report, you should know how to:

• collect data and analyze it

• write a lab report which includes:

– title which describes the experiment

– purpose which explains the objective(s) of the experiment

– results obtained, including data analysis

– discussion of uncertainties explaining significant sources of uncer-
tainty and suggesting possible improvements

– conclusions about the experiment, which should address the orig-
inal objective(s).

In addition, you should have some understanding about how experimental
technique can influence your results, and what to do about it.
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15.6 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 3 50
Post-lab Questions 12 (in report)

Pre-lab Tasks 4 10
In-lab Tasks 4 40
Post-lab Tasks 0 0
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15.7 Template

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:

Person A is:
Person B is:

The dense ball is made of:
The other ball is :

quantity symbol single/
given/ repeated/
mine constant

Not in equations

Table 15.1: List of quantities
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symbol value units instrument effective
name precision zero uncertainty

measure error
( e.g. A.1)

Not in equations

Table 15.2: Single value quantities

quantity symbol equation uncertainty

acceleration due
to gravity

Table 15.3: Calculated quantities
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symbol factor bound units

Sources of systematic error
h bend in tape measure

Sources of random error

Table 15.4: Experimental factors responsible for effective uncertainties
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Instrument
name

units

precision
measure

Times
Ball one Ball two

( ) ( )
A dropping B dropping

i gofer(B) dropper(A) dropper(B) gofer(A)

1

2

3

4

5

average

σt

αt

∆ (t̄)
g

Table 15.5: Timing data
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Where to answer
Question Discussion Conclusions
number (y/n) (y/n)

In-lab

Post-lab

Hints
“think” “agree”

“suggest” “equal”
“explain” “do (did, does) ”

“how” “significantly different”
“why” “support”
“what” “verify”

Table 15.6: Lab Report Organization
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Exercise on Processing
Uncertainties

16.1 Purpose

The purpose of the exercise is to develop skills in calculating with uncertain-
ties, which will include calculating uncertainties in calculated values of ‘g’,
recognizing significant sources of error, and writing a “Discussion”. Many of
these results will be used in future labs, so be sure not to lose this report.

16.2 Introduction

This exercise should help you become familiar with calculations involving
uncertainties, and how to address them in lab reports.

The “Discussion of Errors” (or Uncertainties) section of a lab report is
where you outline the reasonable limits which you place on your results. If
you have done a professional job of your research, you should be prepared
to defend your results. In other words, you should expect anyone else to get
results which agree with yours; if not, you suspect theirs. In this context,
you want to discuss sources of error which you have reason to believe are
significant.
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16.3 Theory

This has been covered previously. (See Chapter 10, “Uncertain Results”, in
the manual.)

16.3.1 Summary of Rules for algebra (in the form of
equations)

Uncertainties in functions of a single variable

∆f(x) ≈ |f ′(x)|∆x (16.1)

Also, remember three important corollaries

(e) ∆ (c× (A±∆A)) = |c| (∆A)

(f) ∆(
1

(A±∆A)
) ≈

∣∣∣∣ 1

A

∣∣∣∣ ∣∣∣∣∆AA
∣∣∣∣

(g) ∆(A±∆A)n ≈
∣∣nAn−1

∣∣∆A
Rules for combining multiple variables

The uncertainty in results can usually be calculated as in the following ex-
amples (if the percentage uncertainties in the data are small):

(a) ∆(A+B) = (∆A+ ∆B)

(b) ∆(A−B) = (∆A+ ∆B)

(c) ∆(A×B) ≈ |AB|
(∣∣∣∣∆AA

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣)

(d) ∆(
A

B
) ≈

∣∣∣∣AB
∣∣∣∣ (∣∣∣∣∆AA

∣∣∣∣+

∣∣∣∣∆BB
∣∣∣∣)

Note that the first two rules above always hold true.

16.3.2 Summary of Rules for inspection (in the form
of equations)

There’s really only one rule for inspection.

∆f(x) ≈ fmax − f (16.2)
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or

∆f(x) ≈ f − fmin (16.3)

16.3.3 Interpretation and Expression of Uncertainties

Sensitivity of Total Uncertainty to Individual Uncertainties

If f = f(x, y), then to find the proportion of ∆f due to each of the individual
uncertainties, ∆x and ∆y, proceed as follows:

• To find ∆fx, let ∆y = 0 and calculate ∆f .

• To find ∆f y, let ∆x = 0 and calculate ∆f .

Simplifying Uncertainties

You do not need to carry uncertainties through if they do not contribute
more than 10% of the total uncertainty, since uncertainties are usually only
expressed to one decimal place. (However, be sure to give bounds for these
uncertainties when you do this.)

Uncertainties and Final Results

Mathematically, if two quantities a and b, with uncertainties ∆a
and ∆b are compared, they can be considered to agree within
their uncertainties if

|a− b| ≤ ∆a+ ∆b (16.4)

A value with no uncertainty given can be assumed to have an
uncertainty of zero.

If two numbers do not agree within experimental error, then the
percent difference between the experimental and theoretical val-
ues must be calculated as follows:

Percent Difference =

∣∣∣∣theoretical − experimentaltheoretical

∣∣∣∣× 100%

(16.5)
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Remember: Only calculate the percent difference if your results
do not agree within experimental error.

Significant Figures in Final Results

Always quote final answers with one significant digit of uncertainty, and
round the answers so that the least significant digit quoted is the uncertain
one.

For instance, suppose an experiment determined a value for the speed of
light

c = 2.953× 108m/s

and from that experiment the uncertainty was

∆c = 4.26× 106m/s

First round the uncertainty to one significant figure; i.e.

∆c = 4× 106m/s

Rewrite this value so that it uses the same power of 10 as the value for c. In
other words,

∆c = 0.04× 108m/s

Since the uncertainty digit is the second one after the decimal, round the
value for c to two places after the decimal.

c = 2.95× 108m/s

So putting those together, we end up with

c = (2.95± 0.04)× 108m/s

In other words, the uncertainty has only one significant digit, and the last
digit we show for c is the uncertain one.

16.3.4 Discussion of Uncertainties

• Spend most of your time discussing the factors which contribute the
most to the uncertainties in your results.
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• Always give a measured value or a numerical bound on an uncertainty.

• State whether any particular factor leads to a systematic uncertainty
or a random one. If it’s systematic, indicate whether it would tend to
increase or decrease your result.

Types of Errors

• Measurable uncertainties

• Bounded uncertainties

• Blatant filler

Don’t use “human error” as it’s far too vague.

Reducing Errors

1. Avoid mistakes.

2. Repeat for consistency, if possible.

3. Change technique.

4. Observe other factors as well including ones which you may have as-
sumed were not changing or didn’t matter.

5. Repeat and do a statistical analysis.

6. The last resort would be to change the equipment.

Ridiculous Errors

Anything which amounts to a mistake is not a valid source of error. A serious
scientist will attempt to ensure no mistakes were made before considering
reporting on results.
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16.4 Procedure

16.4.1 Preparation (before the lab)

Pre-lab Tasks

PT1: Copy the data from the results of “Measuring ‘g’” into Table 16.2.

PT2: Rearrange Equation 15.1 to solve for g as required in IQ1 and fill it
in the appropriate line on the first page of the template. (If you’re not using
a printed template, write it out on a piece of paper and bring it with you to
the lab.)

PT3: What was the precision measure of the stopwatch from “Measuring
‘g’”? Copy this value into the template. (If you’re not using a printed
template, write it out on a piece of paper and bring it with you to the lab.)

PT4: What were the height and the realistic uncertainty in the height from
“Measuring ‘g’”, and what factor(s) caused the uncertainty? Copy these
values into the template. (If you’re not using a printed template, write it out
on a piece of paper and bring it with you to the lab.)

PT5: Use the online statistics calculator, or do the calculations by hand, to
fill in the rows for t̄ and ∆ (t̄) in Table 16.2.

PT6:
Fill in the following results, based on Chapter 10, “Uncertain Results”,

in the manual.

24.2 ± 0.1
+ 1.03 ± 0.02

±

81.2 ± 0.4
− 29.4 ± 0.3

±
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16.4.2 Investigation (in the lab)

This exercise can be done outside the lab if you wish. Alternative
instructions are boxed like this. For your lab period bring your
answers to the in-lab questions and the completed in-lab tasks to
the lab.

In-lab Tasks

Complete the in-lab tasks as you encounter them.

Part 1: Finding the uncertainty by two methods
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152 Exercise on Processing Uncertainties

1. Find the equation for ∆g by both methods; (algebra and inspection).

• To find the equation for ∆g by algebra:

(a) Since the equation for g has two variables, h and t, find which
of the rules for multiple variables looks most like the equation
for g.

(b) Rewrite the equation, replacing A and B with the appropriate
quantities from the equation for g.

(c) You will have a place where you need to determine the un-
certainty in a function of h, and a place where you need to
determine the uncertainty in a function of t. Identify these.

(d) For the two places just mentioned, use the function rule to
determine the two uncertainties.

(e) Replace the results from the function rule in the equation for
the uncertainty.

(f) Simplify the equation where possible, but don’t try to rear-
range it in any other way.

(g) If you’ve done things correctly, you should now have an equa-
tion for ∆g that only involves h, ∆h, t, and ∆t, so you can
plug in values.

• To find the equation for ∆g by inspection:

(a) The equation for g has two variables, h and t. If you replace
h by either h + ∆h or h − ∆h, which would make g bigger?
If you replace t by either t+ ∆t or t−∆t, which would make
g bigger?

(b) Make the two substitutions above in the equation for g and
call this gmax.

(c) The uncertainty in g is given by subtracting g from gmax.
Write this out.

(d) Don’t try to simplify the equation or rearrange it in any other
way.

(e) If you’ve done things correctly, you should now have an equa-
tion for ∆g that only involves h, ∆h, t, and ∆t, so you can
plug in values.
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2. Using your actual data, and the results from previous exercises, find
the numerical values of∆g for one data set by both methods. The two
methods should give the same answer when rounded to one significant
figure. If they are very different, you have probably made an error
somewhere.

3. Using either method, determine the equations for ∆gh and ∆gt.

4. Using your actual data, find the numerical values of the sensitivity of
∆g to each of the quantities involved, (i.e. ∆gh and ∆gt), based on
your data for the same data set.

IT1: Copy the equations for ∆g by inspection and by algebra into the tem-
plate.

Part 2: Using the online uncertainty calculator

1. For one of the values of t̄ and ∆ (t̄) from Table 16.2, use the uncer-
tainty calculator to calculate (t̄)2 and ∆

(
(t̄)2). (Hint: This will use

a function on the calculator. You may want to do this for the other
values of t̄ and ∆ (t̄) while you’re at it.

2. Take your values of h and ∆h from PT4 and use the uncertainty cal-
culator to calculate 2h and ∆ (2h). (Hint: This will use an operator
on the calculator.

IT2: Fill in these results in Table 16.1. If you’re using the online version of
the manual, write the results on a sheet of paper.
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t̄ ∆ (t̄) (t̄)2 ∆
(
(t̄)2)

h ∆h 2h ∆(2h)

Table 16.1: Using the uncertainty calculator

In-lab Questions

In the last two steps of IQ1 , you can use the online uncertainty
calculator instead of doing the calculations by hand.

IQ1: (From “Measuring ‘g’” )

• State the equation for ∆g by both methods; (algebra and inspection).
State which method you preferred and why.

(Note: you will first have to rearrange the equation.)

• State the numerical values you found for of∆g for one data set by both
methods. Do the two methods give the same answer when rounded to
one significant figure? If not, do they give consecutive values?

• State the equations you determined for ∆gh and ∆gt.

• State the numerical values you found for the sensitivity of ∆g to each
of the quantities involved, (i.e. ∆gh and ∆gt), based on your data for
the same data set.

For the “Measuring ‘g’” experiment, answer the following questions. Don’t
discuss an uncertainty unless you have given a measured value or an esti-
mated bound for it.
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16.5 Bonus 155

IQ2: From your numerical results for the uncertainty in g, which quantity,
(h or t), produced the biggest proportional effect? In other words, which was
bigger, ∆gh or ∆gt?

IQ3: From the answer to question 2, what experimental factor from those
discussed when you collected the data made the biggest contribution to the
uncertainty in the quantity mentioned?

IQ4: From the answer to question 3, what steps might be taken to reduce
the uncertainty, keeping in mind the guidelines about the best ways to reduce
uncertainties from earlier in this exercise?

IQ5: For the quantity not used in question 2, (in other words, the quan-
tity that produced the smaller proportional effect), what factor from those
discussed when you collected the data made the biggest contribution to the
uncertainty in the quantity? What steps might be taken to reduce the un-
certainty, keeping in mind the guidelines about the best ways to reduce un-
certainties?

IT3: Read over each of the inlab questions, and decide where the answers
should appear in your lab report. (Note that some questions may have parts
of the answers in each section.) Fill in the results in Table 16.3.

16.4.3 Analysis (after the lab)

All of the in-lab questions from this exercise should be incorporated into your
Discussion for “Measuring ‘g’”. This should also be the case for all of the
exercises which you used when completing the “Measuring ‘g’” lab report.

16.5 Bonus

Do either one.

16.5.1 Bonus: Examining the uncertainty calculator

From your results determined for IT2: Explain whether the uncertainty
calculator uses inspection or algebra. How can you figure this out? (Hint:
Figure out the equation for the uncertainty in t2 by both methods.)
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16.5.2 Bonus: Proof of earlier result; uncertainty in
marble volume

This question is from the “Uncertain Results” section of the manual.
For a sphere,

V =
4

3
π

(
d

2

)3

and so by inspection

∆V ≈ 4

3
π

(
d+ ∆d

2

)3

− 4

3
π

(
d

2

)3

Algebraically,

V ′ = 2π

(
d

2

)2

=
π

2
d2

and so
∆V ≈

∣∣∣π
2
d2
∣∣∣∆d

Show that these two methods give the same results if uncertainties are small;
i.e. if ∆d << d. Remember that uncertainties in final results are usually
only expressed to one decimal place, so you can usually discard terms with
two or more ∆ terms multiplied together; for instance ∆A∆B ≈ 0

16.6 Recap

By the end of this exercise, you should know how to calculate the uncertainty
for :

• quantities which are added

• quantities which are subtracted

• quantities which are multiplied

• quantities which are divided

• functions of quantities, by

– algebraic method
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– inspection

In addition, you should understand

• how to use the online uncertainty calculator

16.7 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 5 40
Post-lab Questions 0 0

Pre-lab Tasks 6 20
In-lab Tasks 3 40
Post-lab Tasks 0 0

Bonus 5
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16.8 Template

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:

g has units of:
The equation for g is:

h has a value (with units) of:
The realistic uncertainty in h is:

The precision measure of the stopwatch (including units) was:

The equation for ∆g by inspection is:

The equation for ∆g by algebra is:
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Times (seconds)
Ball one Ball

A dropping B dropping two
i gofer(B) dropper(A) dropper(B) gofer(A)

1

2

3

4

5

t̄

∆ (t̄)

g

∆g

∆gh

∆gt

Which is most
significant,
∆h or ∆t?

Table 16.2: Uncertainties for g
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160 Exercise on Processing Uncertainties

Where to answer
Question Discussion Conclusions
number (y/n) (y/n)

In-lab

Hints
“think” “agree”

“suggest” “equal”
“explain” “do (did, does) ”

“how” “significantly different”
“why” “support”
“what” “verify”

Table 16.3: Lab Report Organization
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Chapter 17

Torque and the Principle of
Moments

17.1 Purpose

The object of this experiment is to study and understand the concepts of
torque and static equilibrium of a body.

17.2 Introduction

This experiment should help the student become familiar with simple calcu-
lations with uncertainties.

17.3 Theory

In order for a rigid body to remain in equilibrium, the following two condi-
tions must be satisfied:

1. the resultant external force acting on the body must be zero.

2. the sum of the moments (torques) acting in a counter-clockwise direc-
tion about any point must equal the sum of the clockwise moments
about the same point. (This is the Principle of Moments.

The body is in static equilibrium if it is at rest with respect to its frame of
reference (which in this case would be the lab table).

Fall 2016



162 Torque and the Principle of Moments

The moment of a force, or torque, is a measure of the force’s tendency to
cause rotation. It is defined as the product of the magnitude of the force and
the perpendicular distance from the axis of rotation to the line of action of
the force.
In the case of a lever, the axis of rotation is called the fulcrum.
In Figure 17.1, the moment of force, ~F about an axis of rotation through A
is given by Fd. (Of course, the units of torque are those of force × distance).

A axis of rotation

d

~F

line of action

Figure 17.1: Definition of Torque

Consider the system of Figure 17.2. If the horizontal bar is a stick of uniform
cross-section and density balanced at its centre of mass, then this system is
subjected to two torques about a point at the centre of mass of the stick;

1. the force Wa = mag at perpendicular distance a counterclockwise.

2. the force Wb = mbg at perpendicular distance b clockwise.

The second condition of static equilibrium (The Principle of Moments) is
satisfied if

Waa = Wbb (17.1)

which simplifies to

maa = mbb (17.2)
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Wa = mag Wb = mbg

a b

rs

rb

ra

Figure 17.2: System in Static Equilibrium (Part 1)

17.4 Procedure

17.4.1 Preparation (before the lab)

Pre-lab Tasks

PT1: For the system in Figure 17.2, determine the equations for ∆τcw and
∆τccw, given a, b, ma, mb, ∆a, ∆b, ∆ma and ∆mb. (τcw and τccw are the
clockwise torque and the counter-clockwise torque, respectively.) Copy the
equations into Table 17.7

17.4.2 Investigation (in the lab)

Apparatus

Uniform and non-uniform meter sticks, 3 meter stick clamps with knife-edge
load supports, a spring scale, a set of hooked weights, a laboratory balance
and a support stand.
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164 Torque and the Principle of Moments

In-lab Questions

In this experiment, the in-lab questions are included with each part.

Method

Part 1: Testing the Principle of Moments

1. Place one metre stick clamp near the centre of the uniform metre stick
and suspend this combination from the suspension point so that the
zero cm mark of the metre stick is at the left end.

2. Find the reading at the centre of mass of the metre stick by sliding it
in its clamp1 until it lies horizontally at rest. Record this position, rs.

3. Adjust the clamp slightly to determine how far you can move it until the
stick is noticeably not horizontal. Use this to determine the uncertainty
∆rs.

4. Weigh the two remaining clamps and record their masses with their
uncertainties.

5. With the metre stick as above, suspend a weight from a hanger on each
side of the centre of mass, as in Figure 17.2. Use mb ≥ 2ma so that you
get very different distances for a and b. When adjusting the position of
the second mass for equilibrium, use the same procedure used earlier
for ∆rs to determine the uncertainty in the position of the second mass.

6. Record ra, the reading at position a, and rb, the reading at position b
with their uncertainties.

IT1:Fill in the results in Table 17.1.

IQ1: Why do you not need to experimentally find the uncertainty in the
positions of both masses?

Note that ma and mb include the masses of their respective hangers.

1In this experiment, the terms “hanger” and “clamp” will both be used to describe the
same piece of equipment. This is because the function is slightly different in each case.
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Part 2: Mass and Center of Mass Determination from a Single
Equilibrium Setup

1. Check to see if the spring scale reads zero when unloaded. If it doesn’t,
be sure to record the zero error with its uncertainty for use later in this
experiment. Hang the spring scale from the system support.

2. Suspend a 200g mass from a hanger between the 10 and 20 cm marks
of the metre stick as in Figure 17.3 and record the metre stick reading
at the position of the hanger (ra in the diagram).

Fa = mag f ′ = m′g f = mg

W = Mg

c.m.

rs

a b

ra

rb

Figure 17.3: For Parts 2 and 3

3. Support the system by a hanger which is attached to the spring scale
and to the metre stick between the suspension point of the 200g mass
and the known centre of mass of the stick. Record the metre stick
reading, rs, at the point of suspension. In this case, only m, the metre
stick mass, is unknown. It can be determined by either of the conditions

Fall 2016



166 Torque and the Principle of Moments

required for static equilibrium:∑
Fext = 0 (17.3)

and∑
τext = 0 (17.4)

Equating forces up to forces down

W = Fa + f + f ′ (17.5)

or

M = ma +m+m′ (17.6)

where

• M is the total suspended mass, read from the spring scale

• m is the mass of the metre stick

• m′ is the mass of the clamp at the point of suspension

• ma is the suspended mass (including the clamp at a)

Thus, m is obtained from

m = M −ma −m′ (17.7)

From Equation 17.4, the sum of the counterclockwise torques about
any point equal the sum of the clockwise torques about that point.
Thus, about the point of suspension

Faa = fb (17.8)

or

maa = mb (17.9)

and finally
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m = (a/b)ma (17.10)

4. Calculate rb and its uncertainty, since, from the diagram, rb = rs + b.

5. Find rb directly as in Part 1.

6. Measure the mass of the metre stick using the balance in the lab.

IT2:Fill in the results in Tables 17.2 and 17.3.

Part 3: The Non–Uniform Metre Stick

1. Set up the non-uniform metre stick set up exactly as in Part 2. Again
we have two unknowns:

(a) m, the metre stick mass, and

(b) rb, the distance from the zero end of the stick to the centre of
mass.

2. Repeat the measurements as in Part 2.

3. Find rb directly as in Part 1.

4. Measure m on the lab scale.

IT3:Fill in the results in Tables 17.4 and 17.5.

IQ2: Does the position of the centre of mass of the non-uniform metre stick
make sense given where the holes are?

IQ3: Given what you know about torques, which holes make the biggest
contribution to moving the centre of mass away from the 50cm mark?

17.4.3 Analysis (after the lab)

Part 1: Testing the Principle of Moments

1. Calculate to clockwise and counterclockwise torques to see if the Prin-
ciple of Moments was obeyed.
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168 Torque and the Principle of Moments

Part 2: Mass and Center of Mass Determination from a Single
Equilibrium Setup

1. Using Equation 17.7, calculate the mass of the metre stick.

2. Using Equation 17.10, and the mass calculated above, calculate the
distance b to the centre of mass of the metre stick.

3. Use the metre stick reading for the point of suspension rs recorded
earlier and b to calculate rb, the reading on the metre stick at the centre
of mass.

4. Compare your calculated and measured values for rb and m.

Part 3: The Non–Uniform Metre Stick

1. Perform a similar analysis to that for Part 2 above.

Post-lab Discussion Questions

Q1: Was the Principle of Moments obeyed for the system in Part 1? Explain.

Q2: Did the measured and calculated masses for the metre stick in Part 2
agree?

Q3: Did the the measured position of the centre of mass in Part 2 agree with
the value calculated?

Q4: Did the measured and calculated metre stick masses in Part 3 agree?

Q5: Did the the measured position of the centre of mass in Part 3 agree with
the value calculated?

17.5 Bonus: Unknown Metre Stick and Un-

known Mass

Given

1. a non–uniform metre stick of unknown mass and centre of mass

2. an object of unknown mass,
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3. one object of known mass,

4. assorted hangers of known mass,

and no spring scale, explain how you could determine the mass of the object.
Time permitting, try it and discuss your results.

17.6 Recap

This lab should be a review of:

• calculations with uncertainties

• how to write a lab report

17.7 Summary

Item Number Received weight (%)
In-lab Questions 3 50
Post-lab Questions 5 (in report)

Pre-lab Tasks 1 10
In-lab Tasks 3 40
Post-lab Tasks 0 0
Bonus 5
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17.8 Template

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:
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quantity symbol value effective
uncertainty

Part 1
Instrument

name
units
precision
measure
reading at
point of rs
suspension
reading at ra
point a
reading at rb
point b

Instrument
name
units
precision
measure
mass of
clamp at a
mass of
clamp at b

Instrument
name
units
precision
measure
added mass
at a
added mass
at b

Table 17.1: Quantities measured only once (Part 1)
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quantity symbol value effective
uncertainty

Part 2
Instrument

name
units
precision
measure
reading at
point of rs
suspension
reading at rb
centre of mass
(direct
measurement)
reading at ra
point a

Instrument
name
units
precision
measure
total mass
from spring M
scale

Table 17.2: Quantities measured only once (Part 2) -to be continued
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quantity symbol value effective
uncertainty

Part 2 (continued)
Instrument

name
units
precision
measure
mass of clamp
at suspension
point s
mass of
clamp at a
mass of m
metre stick
(direct
measurement)

Instrument
name
units
precision
measure
added mass
at a

Table 17.3: Quantities measured only once (Part 2 continued)
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quantity symbol value effective
uncertainty

Part 3
Instrument

name
units
precision
measure
reading at
point of rs
suspension
reading at ra
point a
reading at rb
centre of mass
(direct
measurement)

Instrument
name
units
precision
measure
total mass
from spring M
scale

Table 17.4: Quantities measured only once (Part3) -to be continued
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quantity symbol value effective
uncertainty

Part 3 continued
Instrument

name
units
precision
measure
mass of clamp
at suspension
point s
mass of
clamp at a
mass of m
metre stick
(direct
measurement)

Instrument
name
units
precision
measure
added mass
at a

Table 17.5: Quantities measured only once (Part3 continued)
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quantity symbol value uncertainty units

Part 1

Table 17.6: Given (ie. non-measured) quantities (ie. constants)

quantity symbol equation uncertainty

Table 17.7: Calculated quantities
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symbol factor bound units

Sources of systematic error

Sources of random error

Table 17.8: Experimental factors responsible for effective uncertainties
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Where to answer
Question Discussion Conclusions
number (y/n) (y/n)

In-lab

Post-lab

Hints
“think” “agree”

“suggest” “equal”
“explain” “do (did, does) ”

“how” “significantly different”
“why” “support”
“what” “verify”

Table 17.9: Lab Report Organization
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Chapter 18

Exercise on Estimation,
Bounding, and Order of
Magnitude Calculations

18.1 Purpose

The purpose of this exercise is to develop skills in estimating quantities when
you can’t measure them directly, and to make estimates of some sample
quantities.

18.2 Introduction

While we usually think of science as involving measurement, there are many
times when approximate values for quantities must be produced even when
precise measurements are difficult or impossible. This exercise is about how
that is done.

18.3 Theory

18.3.1 Estimation

Lots of experiments involve quantities which must be estimated. (For in-
stance, before you measure anything, it’s good to be able to estimate the
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Calculations

result you expect, so you can determine what sort of instrument or method
you’ll need to perform the measurement.) Some estimates may be better
than others, but what really matters is that you have a fair idea about how
far off your estimate could be.

Bounding

Bounding a quantity is forming an estimate of how far off it could be. An
upper bound is a numerical limit above the expected value, and a lower bound
is a numerical limit below the expected value.

Picking Realistic Bounds It’s often easy to come up with reasonable
bounds for a quantity by using similar known quantities which are pretty
clearly above or below. For instance, if you are estimating a person’s height,
then you can compare with known heights of family members or friends. If
you have to estimate the mass of an object, you can compare it to objects
with which you are familiar.

Range of Possible Values for a Quantity The range of values for a
quantity is the difference between its upper and lower bounds.

Familiar Comparison

If you’re trying to estimate something, and it’s similar to something you
know, then you can probably make a pretty good estimate through compar-
ison. In other words, if you can establish an upper and a lower bound, then
you can estimate something in between.

18.3.2 Order of Magnitude Calculations

Quantities which are too difficult to be estimated directly can be estimated
by performing calculations with estimates. For instance, sometimes certain
quantities can be measured but others must be estimated. These calculations
are called order of magnitude calculations1, since their purpose is to give
a result which is within an order of magnitude (i.e. a factor of ten) of the
result of the detailed calculation.

1or, “back of the envelope calculations”
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18.3.3 Logarithmic scale

On a logarithmic scale, such as the one in Figure 18.1, the distance of a
number from the left end of the scale is proportional to the logarithm of the
number. Figure 18.2 and Figure 18.3 show some other possibilities. (Loga-
rithmic scales are often identified by the number of cycles they show.) A
cycle is the space between two numbers which differ by a factor of ten. So,
between 1 and 10 is one cycle, between 2 and 20 is one cycle, between 5 and
50 is one cycle, etc. Note that there is no zero on a logarithmic scale. All
numbers are positive.

18.4 Procedure

18.4.1 Preparation (before the lab)

There is no preparation required for this exercise.

18.4.2 Investigation (in the lab)

Illustration of Comparison

To illustrate, we’ll try to make a few simple estimates. The first question we
want to answer is: How tall am I?

1. Find someone who thinks they are shorter than me. Record that per-
son’s height. If that someone is shorter than I am, that person’s height
is definitely a lower bound for my height.

2. Find someone who thinks they are taller than me. Record that person’s
height. If that someone is taller than I am, that person’s height is
definitely an upper bound for my height.

3. Estimate my height according to the two known heights. If, for exam-
ple, you are closer in height to the person who has the lower bound
height than to the person who has the higher bound height, you would
estimate your height closer to that of the lower bound person.

4. Estimate the bounds you would place on my height. (For instance,
if you saw someone about my height commit a crime, what range of
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Calculations

heights would you give to investigators so that it would be of use in
identifying suspects?)

IQ1: Give the heights of the people who you thought were taller and shorter
than me. From these heights estimate my height and explain how you came
up with my height. What bounds would you place on my height? Are they
as far apart as the two heights of the people you knew?

The goal when making estimates is to try and make them “safe”
but “useful”; i.e. you are pretty sure about lower and upper
bounds on your estimate, but the bounds are close enough to-
gether to make the estimate usable.

IT1: Form a group of 3 or 4, and use items in the class to make comparisons.
Fill in Table 18.1 with a reasonable estimate and bounds for each of the
following:

• my height (from above)

• mass of a block of wood (comparing to known masses)

• volume of liquid

Less Familiar Comparison

Often it’s not easy to make a clear comparison with something very similar,
and so the bounds and thus the estimate have to be a bit more fuzzy.

IT2: Based on your experience, fill in Table 18.2 with suggested bounds and
a reasonable estimate for each of the following:

• height of this building (in metres)

• length of this building (in metres)

• mass of lab table (in kilograms)

IQ2: For one of those quantities, explain how you came up with the bounds
and the estimate. Was the range of values for this comparison proportionally
larger than for the familiar comparisons above? Explain.
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Order of Magnitude Calculations

In labs, order of magnitude calculations are often done with preliminary data
to see if the results seem to be as expected. Using the wrong units, a common
mistake in labs, shows up easily in order of magnitude calculations. In these
calculations, the formula may the one that will ultimately be used with the
complete data, but with incomplete or estimated values it is an order of
magnitude calculation. (In these cases, if you’re using a calculator, there’s
no need to type in the known values to more than one or two significant
figures since the result will be approximate anyway.)

Since an order of magnitude calculation is supposed to be within
one order of magnitude, you should be fairly confident that 10
times the value is clearly too big, and 1/10 of the value is clearly
too small.

Illustration of Order of Magnitude Calculation

The next question we want to answer is: How many coffees are sold in the
Tim Horton’s in the Science building every day?

How can we figure this out?

There are several things we know about this problem. We know:

• They have lineups at certain times of the day.

• They have to sell enough coffee to pay their staff.

• It takes a certain amount of time to serve a coffee.

• There are a fixed number of coffeemakers and pots that process all of
the coffee each day.

Each of these facts can be used with a bit of reasoning to produce a cal-
culation of the number of coffees sold in a day, provided we can estimate
the quantities involved. An example with a related problem can be used to
illustrate.
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Calculations

How many gold parking spaces are there at Laurier?

1. Gold parking lots are for faculty and staff. So, there are probably less
gold spaces than the total number of faculty and staff at Laurier, since
some will walk, bus, carpool, etc.

2. There are several lots of various sizes, so an estimate of the number
of lots and the average size will allow estimating the total number of
spots.

In the first case, the lot in front of the science building has maybe 50
spots; (about 25 on each side). I think there are around 10 or 15 gold lots
around campus, so let’s say ten. If we call the average number of spots in a
lot S, and the number of lots L, then the number of spaces, N , is given by

N = S × L

or
N ≈ 50× 10 = 500

So I’d estimate around 500 gold spots on campus. Does this make sense?

• Are there more than 50 spots? Since there are probably about 50 in
front of the science building alone, then yes, there are more than 50.

• Are there less than 5000 spots? Since Laurier has around 10000 stu-
dents, there would have to be one faculty or staff member for every two
students to be able to use 5000 spots, which doesn’t fit with what I
observe. (I’d guess that there are more like one faculty or staff person
for every 10 students or so.) So, yes, there are less than 5000.

Putting these together, my order-of-magnitude estimate of 500 spots is rea-
sonable.

One of the important things to understand about order of magnitude
calculations is that they are somewhat self-correcting; i.e. you’re likely to
overestimate some quantities but underestimate others, so the effects will
cancel somewhat.

IQ3: Using the facts you know about Tim’s that I listed earlier, produce two
different formulas for the number of coffees in a day, with definitions of each
of the quantities in the equation. Using estimates for each of the quantities
involved, calculate results for each method. Discuss whether the two results
are within an order of magnitude of each other. (If they aren’t, suggest which
particular estimates are the most suspect.)
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When is a calculation an Order of Magnitude Calculation?

Any time you have to do a calculation using an estimated quantity, you are
performing an order of magnitude calculation. The order of magnitude
of a quantity refers specifically to the power of ten in its measurement. For
instance, the height of the building would be in metres, while the length
would be in tens of metres. In more general terms, the order of magnitude
of a quantity refers to the cycle of a logarithmic scale to which the quantity
belongs. Thus we could say that the order of magnitude value for the length
of the science building is

• around 100 metres

• between 50 and 200 metres

Both of these are order of magnitude estimates.

When are Order of Magnitude Calculations used?

Order of magnitude calculations are quite commonly done in science before
an experiment is performed. This is so that the range of expected data can
be determined. They are also often done as the data are being collected to
see if the experimental results appear to be in the correct ballpark.

An order of magnitude calculation is any kind of calculation
which will produce an answer which should be close to the “real”
answer. Any calculation involving at least one estimated quan-
tity is an order of magnitude calculation. Generally, the more
estimated quantities involved in an order of magnitude calcula-
tion, the wider the distance between the upper and lower bounds
produced.

Logarithmic scale

If several people make estimates, they will no doubt vary. However, they will
probably still be in a common ballpark. This can be more easily observed
by plotting the values on a logarithmic scale, such as the one in Figure 18.1.

Where would zero be, if you wanted to show it?
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Calculations

1 2 5 10

Figure 18.1: Logarithmic scale

1 2 5 10 20 50 100 200 500 1000

Figure 18.2: Three cycle logarithmic scale

0.1 0.2 0.5 1 2 5 10 20 50 100

Figure 18.3: Logarithmic scale with numbers less than one

There are many things which we perceive on a logarithmic scale (such as the
volume of music).

How big is an order of magnitude on a logarithmic scale?

If two numbers are within the same cycle of a logarithmic scale,
they are within an order of magnitude of each other.

IT3: For the quantity estimated in IQ3, use the logarithmic scale of Fig-
ure 18.4 and mark 3 or 4 of the class estimates on it.

IQ4: Do all of the estimates for that quantity fall within a single cycle of
the scale? (In other words, between 2 and 20, 5 and 50, 10 and 100, etc.)
Explain.
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Uncertainties

A quantity that is bounded can be expressed as an estimate with an uncer-
tainty. (This is a little less cumbersome than giving the estimate, the lower
bound, and the upper bound.) Usually it’s easiest to express uncertainties in
linear (i.e. non-logarithmic) terms, so that an estimate can be given which is
“plus or minus” some amount. In order to do this, it may require adjusting
one of the bounds so that the uncertainty can be the same in both directions.
For instance, the length of the building was estimated to be between 50 and
200 metres. If I think it’s probably around 100 metres I could modify my
estimate of “between 50 and 200 metres” to be “between 50 and 150 metres”
which I could state as “100± 50 metres”.

If you have upper and lower bounds for a quantity, then the un-
certainty can be estimated as one half of the range; i.e.

uncertainty ≈ 1/2(upper bound− lower bound)

IT4: In the same group of 3 or 4, using the upper and lower bounds for the
list of quantities in Task 1 above, and give final estimates with an uncertainty
using your upper and lower bounds in Table 18.3.

IQ5: Did all of your estimates fall midway between your upper and lower
bounds? If not, how did you choose your uncertainty? If so, how would you
choose your uncertainty if that happened?

Comparing Quantities with Uncertainties

IQ6: Compare your answers to the answers from one other group. Do the
answers from the two groups for one item in Task 4 agree with each other?
Give values of both groups to help explain your answer.

18.4.3 Analysis (after the lab)

There are no post-lab requirements since next week final marks will be cal-
culated.
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Calculations

18.5 Recap

By the end of this exercise, you should understand the following terms:

• estimate

• bound

• logarithmic scale

• order of magnitude calculation

All of these concepts are important in research.

18.6 Summary

Item Number Received weight (%)
Pre-lab Questions 0 0
In-lab Questions 6 50
Post-lab Questions 0 0

Pre-lab Tasks 0 0
In-lab Tasks 4 50
Post-lab Tasks 0 0
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18.7 Template

My name:
My student number:
My partner’s name:
My other partner’s name:
My lab section:
My lab demonstrator:
Today’s date:

quantity estimate units upper lower
bound bound

my height

mass of
block of
wood
volume
of liquid

Table 18.1: Estimates for Task 1

quantity estimate units upper lower
bound bound

height of building m

length of building m

mass of lab table kg

Table 18.2: Estimates for Task 2
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Calculations

10 20 50 100 200 500 1000 2000 5000 10000

Figure 18.4: For Task 3

quantity estimate units upper lower uncertainty
bound bound

my height

mass of
block of
wood
volume
of liquid

Table 18.3: Determining Uncertainties for Task 4
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Common Uncertainty Results

Following are some common results about uncertainties which you may find
useful. If there are others which you feel should be here, inform the lab
supervisor so that they may included in future versions of the lab manual.

∆(xn) ≈ n|x|n−1∆x

∆(sinxR) ≈ |cosxR| (∆x)R

∆(tanxR) ≈ (secxR)2(∆x)R

where xR denotes x in radians.

∆ lnx ≈ 1

x
∆x =

∆x

x

∆xy ≈
∣∣xy−1y

∣∣∆x+ |xy lnx|∆y

∆ y
√
x ≈

∣∣∣∣x( 1
y
−1) 1

y

∣∣∣∣∆x+
∣∣∣x 1

y lnx
∣∣∣ ∆y

y2

∆f(x, y, z) ≈
∣∣∣∣∂f∂x

∣∣∣∣∆x+

∣∣∣∣∂f∂y
∣∣∣∣∆y +

∣∣∣∣∂f∂z
∣∣∣∣∆z
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Appendix B

Common Approximations

Following are some common approximations which you may find useful. If
there are others which you feel should be here, inform the lab supervisor so
that they may included in future versions of the lab manual.

Taylor Series Expansion

f(x+ h) =
∑fn(x)

n!
≈ f(x) + hf ′(x)

The following derive from the Taylor series expansions, where x� 1. In
cases where an approximation is given with more than one term, the first
term alone may be sufficient in some cases.

(1 + xn) ≈ 1 + nx

ln(1 + x) ≈ x− x2

2

ex ≈ 1 + x+
x2

2!

The following also assume x is in radians.

sin(x) ≈ x− x3

3!

cos(x) ≈ 1− x2

2!
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Use of the Standard Form for
Numbers

C.1 Introduction

Learning how to use the standard form is easy; learning when to use it is
a bit harder. Following are some examples which should help you decide
when to use it. It is perhaps easiest to illustrate by comparing results using
the standard form and not using it. Remember the point is to present things
more concisely.

1. Voltage V of 2.941 Volts; uncertainty of 0.4517 Volts

• First round the uncertainty to one significant figure; thus

∆V ≈ 0.4 V

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

V ≈ 2.9 V (when rounded to the same decimal place as the un-
certainty)

• So

V = 2.9± 0.4 V

In this case, scientific notation is not needed.

Fall 2016



196 Use of the Standard Form for Numbers

2. Mass m of 140.6 grams; uncertainty of 531.7 grams

This is an example of a situation where the uncertainty is larger than
the quantity itself. The process involved is the same.

• First round the uncertainty to one significant figure; thus

∆m ≈ 500 g

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

m ≈ 100 g (when rounded to the hundreds place)

• So

m = 100± 500 g

In this case, scientific notation is needed, because we need to get
rid of the placeholder zeroes. One option would be to write

m = (1± 5)× 102 g

Another option would be to write

m = 0.1± 0.5 kg

Note that this last option is more concise.

3. Diameter d of 0.727 cm; uncertainty of 0.015 cm

• First round the uncertainty to one significant figure; thus

∆d ≈ 0.02 cm

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

d ≈ 0.73 cm (when rounded to the hundredths place)

• So

d = 0.73± 0.02 cm

In this case, scientific notation is not needed, because there are
no placeholder zeroes.

Another option would be to write

d = 7.3± 0.2 mm
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Note that this last option is slightly more concise, since it gets
rid of two zeroes, and puts d in proper form for scientific notation
(even though in this case the exponent would be zero).

4. Time t of 943 s; uncertainty of 29 s

• First round the uncertainty to one significant figure; thus

∆t ≈ 30 s

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

t ≈ 940 s (when rounded to the tens place)

• So

t = 940± 30 s

In this case, scientific notation is needed, because there are place-
holder zeroes.

One option would be to write

t = (9.4± 0.3)× 102 s

This is in the standard form.

Another option would be to write

t = 9.4± 0.3 hs

However, since “hectoseconds” are not commonly used I would
avoid this (although it is also correct).

Similarly you could write

t = 94± 3 das

Again, since “dekaseconds” are not commonly used I would avoid
this (although it is also correct).1

1I actually had to check on the spelling and notation for dekaseconds and hectoseconds,
so that illustrates how (un)familiar they are.
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Appendix D

Order of Magnitude
Calculations

To check your conversions, (among other things), do a rough calculation of
your results carrying every value to just 1 significant1 figure. (This is easy to
do quickly on a piece of paper without a calculator, so you can be sure that
calculated results are in the right ballpark.)
For instance, for the “Measuring ‘g’ ” experiment,

h ≈ 5m

t ≈ 1s

Thus

g ≈ 2× 5

12
≈ 10m/s2

Be sure to write out these calculations; that way you’ll be clear on the units
you used, etc. If you make an error and have to correct it, you’ll want a
record of it so you don’t make it when you do the “real” calculations.
Since this result is about what you’d expect, then you know any values in
that range should be reasonable.

D.1 Why use just one or two digits?

There are a couple of reasons:

1If the digit is a 1 or a two, then you may carry 2 figures. If you do this then your
answer should be within about 10% of the value you’d get with a detailed calculation.
This is easily close enough to spot any major errors.
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1. Since we’re only using one data point, instead of all of our values, the
result will be approximate, so the extra digits aren’t needed.

2. When people use calculators, they tend to just automatically write
down any answer without thinking. If they made a typing mistake,
they often don’t notice. So by doing it by hand using only one or two
digits, they keep their brains engaged and are more likely to notice an
error.

D.2 Using the median instead of the average

If you have several measurements of a quantity, do the calculation with one
value instead of averaging all of them. The median is easy to find, and should
be close to the average.

D.3 Order of Magnitude Calculations for Un-

certainties

In a similar way, you can check to see if your uncertainties are reasonable.
In the above example, if

∆h ≈ 5 cm

and
∆t ≈ 0.1 s

then

∆g ≈ g

(
∆h

h
+ 2

∆t

t

)
≈ 10

(
0.05

5
+ 2

0.1

1

)
≈ 10 (0.01 + 0.2)

≈ 10 (0.21)

≈ 0.2 m/s2

This makes sense, and so your detailed uncertainty calculations should pro-
duce something in this ballpark.
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Simple Statistical
Approximations

Statistical calculations can be tedious and time consuming in the lab. There
are some ways to get approximate results quickly.

E.1 Simple Method; The Method of Quar-

tiles

There is a way [1] to get values very close to those given by calculating the
mean and standard deviation of the mean with very little calculation. (This
will be true if the data have a Gaussian1 distribution.) The method involves
dividing the data into quartiles. The first quartile is the value which is above
1/4 of the data values; the second quartile is the value which is above 1/2
of the data values2 and so on. The second quartile gives a good estimate
for the average, and the third quartile minus the first quartile gives a good
estimate3 for the standard deviation. Thus,

x̄± α ≈ Q2 ±
(Q3 −Q1)√

n

If you use a number of data values which is a perfect square, such as 16, then
the only calculation is one division!

1or “normal”
2which is also the median
3Actually the inter-quartile distance or IQR ≈ 1.35 σ for normally distributed data.
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E.1.1 Example with an even number of points

Previously, the data in Table E.1 were used for an example:

i xi

1 1.1
2 1.4
3 1.3
4 1.2

Table E.1: Sample Data

From this,

x = 1.25

and

σ = 0.129

and finally

α = 0.0645

Using the method of quartiles, we first rearrange the data, as in Table E.2:

i xi

1 1.1
2 1.2
3 1.3
4 1.4

Table E.2: Ordered Data

Now,

Q1 =
1.1 + 1.2

2
= 1.15

Q2 =
1.2 + 1.3

2
= 1.25

Q3 =
1.3 + 1.4

2
= 1.35
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Thus
x ≈ Q2 = 1.25

and

σ ≈ Q3 −Q1

1.35
=

1.35− 1.15

1.35
= 0.15

and finally

α ≈ 0.15

2
= 0.075

The estimates of σ and α are within about 15% of their correct values.

E.1.2 Example with an odd number of points

The data in Table E.3 will be used for this example:

i xi

1 1.01
2 0.97
3 1.03
4 0.99
5 0.95

Table E.3: Sample Data

From this,
x = 0.99

and
σ = 0.032

and finally
α = 0.014

Again, we first rearrange the data, as in Table E.4:
Now, the quartiles overlap

Q1 = median of 0.95, 0.97, 0.99 = 0.97

Q2 = median of all values = 0.99

Q3 = median of 0.99, 1.01, 1.03 = 1.01

Fall 2016



204 Simple Statistical Approximations

i xi

1 0.95
2 0.97
3 0.99
4 1.01
5 1.03

Table E.4: Ordered Data

Thus
x ≈ Q2 = 0.99

and

σ ≈ Q3 −Q1

1.35
=

1.01− 0.97

1.35
= 0.03

and finally

α ≈ 0.03√
5

= 0.013

The estimates of σ and α are within about 10% of their correct values.

E.2 Simple Method; Using the K factor

For small numbers of measurements, it is possible [2] to get a value close to
the standard deviation by using the range of values to estimate the standard
deviation.

To estimate the standard deviation for a sample of n data points,

σ ≈ Kn × w

where w is the width of the range of data (i.e. the highest minus the lowest
value). The efficiency indicates how well this estimate compares to the cor-
rectly calculated value. For example, with 10 data points, the efficiency of
0.85 indicates that the K factor estimation of the standard deviation is as
statistically reliable as a standard deviation calculated with 0.85× 10 = 8.5
data points.

For convenience, I have defined Kαn, which is used to estimate α, the
standard deviation of the mean, from the range. Since

α =
σ√
n
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n Kn Efficiency Kαn

2 0.89 1.00 0.63
3 0.59 0.99 0.34
4 0.49 0.98 0.25
5 0.43 0.96 0.19
6 0.40 0.93 0.16
7 0.37 0.91 0.14
8 0.35 0.89 0.12
9 0.34 0.87 0.11
10 0.33 0.85 0.10

Table E.5: K factors

then

α ≈ Kn × w√
n

so

Kαn =
Kn√
n

and thus
α ≈ Kαn × w

E.2.1 example

Again we are using the data from Table E.1. n = 4, so

Kn = 0.49

and the width of the range is

w = 1.4− 1.1 = 0.3

and so
σ ≈ 0.49× 0.3 = 0.15

and finally

α ≈ 0.15

2
= 0.075

which are the same values (to two decimal places) as given by the method of
quartiles.
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Lab Checklist

This marking checklist will be used for lab reports this term. You need to
print one off and attach it to each lab report you hand in. Lab reports will
be marked as follows:

• Start with 90

For items not in italics

• Subtract 1 for each˜.

• Subtract 2 for each − .

For items in italics

• Subtract 3 for each˜.

• Subtract 6 for each − .

Note the importance of items in italics. These are very important in a report,
and so are weighted accordingly.
The other 10 marks will be based on how well the post-lab discussion ques-
tions were answered within the text of the report. Remember that the an-
swers to these questions should be an integral part of the report, not merely
an afterthought.
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Lab Format Checklist (V3.0ng)

A. General

1. Your own work
2. Complete
3. Clear and appropriate “Purpose”
4. Flows
5. Did not require help on or after due date
6. Correct grammar
7. Correct spelling
8. Complete sentences where required
9. Legible
10. Professionally presented
11. Properly identified (e.g. name, partner)
12. On time
13. Checklist included
14. Template included

B. Plagiarism Avoidance

1. Data only shared with partner(s)
2. Individual choice of sample data
3. Individual formatting
4. Individual structure of text

C. Data

1. Neat
2. Table column headings informative
3. Units given
4. Uncertainties given
5. Reasonable values
6. Reasonable uncertainties
7. Correct number of significant figures
8. Tables labeled (e.g. “Sample 1 Data”)
9. Tables given numbers (e.g. “Table #2”)
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D. Calculations and Results

1. Any required derivations done correctly
2. Analysis explained where needed
3. Correct formulas used
4. Sample calculations shown where needed
5. All required values calculated
6. Uncertainties included
7. Units included
8. Correct number of significant figures
9. Appropriate use of standard form
10. Theoretical or reasonable value
11. Agreement of experiment with theory

E. Error Discussion

1. Sources listed are significant
2. Sources are prioritized
3. Systematic error consequences
4. Evidence: i.e. test or bound
5. Reasonable suggestions for improvement

F. Conclusions

1. Relate to purpose
2. Major results stated
3. Comparisons made where appropriate
4. Agreement noted when found
5. % difference only when no agreement

G. References

1. Source(s) of constants listed
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Marking Scheme

PC131Lab and Exercise Weighting Fall 2016(Best adding to 100 will count)

A. Required

1. MyLearningSpace Quizzes 10
2. Repeated Measurements Exercise 10
3. Processing Uncertainties Exercise 10
4. Estimation, etc. Exercise 10
5. Measuring “g”*1 10
6. Torque and the Principle of Moments*1 10
7. Measuring “g” report 40

B. Optional (Can replace other marks if higher)

1. Additional weight of Measuring “g” lab re-
port, if over 50

10

2. Additional weight of lab report, if over 80 10
3. Lab test 20
4. Torque lab report 20

1except post-lab questions, which will be in the report
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absolute uncertainty, 42
accuracy, 39

bounding, 180
bounds on uncertainty, 43

calculations
order of magnitude, 180, 182
with uncertainties, 65, 145

calibration error
see linearity error, 54

caliper
micrometer, 48
vernier, 48

deviation
standard, 59

digital instruments, 91
digital scales, 46
Discussion of Errors, 65, 145
Discussion of Uncertainties, 65, 145
discussion of uncertainties, 80

effective uncertainty, 52
equilibrium

static, 161
error

experimental, 33
linearity, 54
zero, 38, 53

errors
discussion of, 65, 145

random, 35
systematic, 34

estimation, 179

g, 125
gravity

acceleration due to, 125

human reaction time, 89

instruments
digital, 91

lab manual layout, 1
lab manual templates, 5
linear scales, 47
linearity error, 54
logarithmic scales, 180, 185

manual
layout of, 1

mean, 57, 58
standard deviation of, 59

measurement
uncertainty in, 35

measurement uncertainty, 33
measurements

optimal number, 60
median, 57
micrometer caliper, 48
micrometer scale, 48
mode, 57
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moments
principle of, 161

operations with uncertainties, 65
optimal number of measurements, 60
order of magnitude calculations, 180,

182

percentage uncertainty, 42
precision, 38
precision measure, 35, 46, 91

digital instruments, 46, 91
non-digital instruments, 47
unknown, 92

radians
uncertainties

functions of angles, 193
random errors, 35
reaction time, 89
realistic uncertainties, 36
relative uncertainty, 42

scales
digital, 46
linear, 47
logarithmic, 180, 185
micrometer, 48
vernier, 48

series
Taylor, 193

significant figures, 40, 80
standard deviation, 59
standard deviation of the mean, 59
standard form, 40, 195
systematic errors, 34

Taylor series, 193
template

filling in, 5
spreadsheet, 7

time
human reaction, 89

torque, 161
trigonometric functions

uncertainties, 193

uncertainties
addition, 68
calculation using algebra rules, 65
calculation using inspection, 73
calculations with, 65, 145
discussion of, 65, 80, 145
division, 70
multiplication, 69
operations with, 65
realistic, 36
sensitivity, 76
subtraction, 68

uncertainties in final results, 78
uncertainty, 33

absolute, 42
bounds on, 43
effective, 52
expressing, 34
percentage, 42
relative, 42
sources of, 34
standard form, 40, 195

uncertainty in measurement, 33
unknown precision measure, 92

vernier caliper, 48
vernier scales, 48

zero error, 38, 53
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