Prime Number Indentifier Circuit PC/CP220 Project Phase II

Terry Sturtevant

Fall 2015

Truth Table

For this particular problem, it would be helpful to create a table of numbers, their binary representations, and indication of their status (i.e. prime, composite, or neither).

number	binary $(a_3a_2a_1a_0)$	p/c/n
0	0000	n
1	0001	n
2	0010	р
3	0011	р
4	0100	с
5	0101	р
6	0110	с
7	0111	р
8	1000	с
9	1001	с
10	1010	с
11	1011	р
12	1100	с
13	1101	р
14	1110	с
15	1111	с

Table 1: Truth Table

In this case, a Karnaugh map can be used to determine simplified sumof-products logic equations.

		$a_1 a_0$			
		00	01	11	10
<i>a</i> ₃ <i>a</i> ₂	00	0	0	1	1
	01	0	1	1	0
	11	0	1	0	0
	10	0	0	1	0

Table 2: Karnaugh Map Table for prime

We can highlight groups of ones in this table:

		$a_1 a_0$			
		00	01	11	10
<i>a</i> ₃ <i>a</i> ₂	00	0	0	1	1
	01	0	1	1	0
	11	0	1	0	0
	10	0	0	1	0

Table 3: Highlighting two groups

The terms given by these groups will be

- $\overline{a_3} \ \overline{a_2} \ a_1 \ (a_0 \text{ is irrelevant})$
- $\overline{a_3} a_2 a_0 (a_1 \text{ is irrelevant})$

		$a_1 a_0$			
		00	01	11	10
<i>a</i> ₃ <i>a</i> ₂	00	0	0	1	1
	01	0	1	1	0
	11	0	1	0	0
	10	0	0	1	0

Table 4: Highlighting two other groups

We can highlight two other groups of ones in this table.

Note that you might miss one of the groups *if you forget that the table wraps* around at the edges.

The terms given by these groups will be

- $\overline{a_2} a_1 a_0 (a_3 \text{ is irrelevant})$
- $a_2 \overline{a_1} a_0 (a_3 \text{ is irrelevant})$

Thus by combining those terms the final equation for the output is

 $prime = \overline{a_3} \ \overline{a_2} \ a_1 + \overline{a_3} \ a_2 \ a_0 + \overline{a_2} \ a_1 \ a_0 + a_2 \ \overline{a_1} \ a_0$

Actually, you may notice the last two terms can be simplified with an XOR, so we could rewrite the equation as

 $prime = \overline{a_3} \ a_2 \ a_0 + \overline{a_3} \ \overline{a_2} \ a_1 + (a_2 \oplus a_1) \ a_0$

We could also factor $\overline{a_3}$ out of the first two terms to get

$$prime = \overline{a_3} \left(a_2 \ a_0 + \overline{a_2} \ a_1 \right) + \left(a_2 \oplus a_1 \right) a_0$$

Testing Logic

Maxima can be used to test the equation. Since maxima doesn't have exclusive or built in, I'll use the sum-of-products form, namely:

$$prime = \overline{a_3} \ \overline{a_2} \ a_1 + \overline{a_3} \ a_2 \ a_0 + \overline{a_2} \ a_1 \ a_0 + a_2 \ \overline{a_1} \ a_0$$

Fall 2015

maxima Maxima 5.25.1 http://maxima.sourceforge.net using Lisp CLISP 2.49 (2010-07-07) Distributed under the GNU Public License. See the file COPYING. Dedicated to the memory of William Schelter. The function bug_report() provides bug reporting information. (%il) tl:(not a3) and (not a2) and al; (%01) (not a3) and (not a2) and a1 (%i2) t2:(not a3) and a2 and a0; (%02) (not a3) and a2 and a0 (%i3) t3:(not a2) and a1 and a0; (not a2) and a1 and a0 (%03) t4:a2 and (not al) and a0; (%i4) (%04) a2 and (not a1) and a0 (%i5) prime:tl or t2 or t3 or t4; ((not a3) and (not a2) and a1) or ((not a3) and a2 and a0) (%05) or ((not a2) and a1 and a0) or (a2 and (not a1) and a0) (%i6) prime, aO=false,a1=false,a2=false,a3=false; (%06) false prime, a0=true,a1=false,a2=false,a3=false; (%i7) (%07) false (%i8) prime, a0=false,a1=true,a2=false,a3=false; (%08) true $\mathbf{2}$ prime, a0=true,a1=true,a2=false,a3=false; (%i9) (%09) true 3 prime, aO=false,a1=false,a2=true,a3=false; false (%i10) (%010) prime, a0=true,a1=false,a2=true,a3=false; (%ill) (%011) true 5(%i12) prime, a0=false,a1=true,a2=true,a3=false; (%012) false (%i13) prime, a0=true,a1=true,a2=true,a3=false; 7 (%013) true (%i14) prime, a0=false,a1=false,a2=false,a3=true; (%014) false prime, aO=true,al=false,a2=false,a3=true; (%i15) (%015) false prime, a0=false,a1=true,a2=false,a3=true; (%i16) (%016) false prime, a0=true,a1=true,a2=false,a3=true; (%i17) (%017) true 11 (%i18) prime, a0=false,a1=false,a2=true,a3=true; false (%018) (%i19) prime, a0=true,a1=false,a2=true,a3=true; (%019) true 13(%i20) prime, a0=false,a1=true,a2=true,a3=true; (%020) false (%i21) prime, a0=true,a1=true,a2=true,a3=true; (%021) false

The numbers shown are the only ones for which *prime* is true, so the equation is correct.