Decoders
 Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University
January 27, 2012

Terry Sturtevant
Decoders Wilfrid Laurier University

Introduction

Introduction

- A decoder usually converts one type of input pattern into a corresponding output pattern.

Introduction

- A decoder usually converts one type of input pattern into a corresponding output pattern.
In principle, virtually any combinational logic circuit could be thought of as some kind of "decoder".

Here's a generic decoder.

7 Segment Decoder

7 Segment Decoder

- A common type of decoder is used to take a numeric input, and produce outputs which will drive some sort of display.

7 Segment Decoder

- A common type of decoder is used to take a numeric input, and produce outputs which will drive some sort of display.
- A binary coded decimal, or BCD number, is simply a four bit value representing numbers from 0 to 9 .

7 Segment Decoder

- A common type of decoder is used to take a numeric input, and produce outputs which will drive some sort of display.
- A binary coded decimal, or BCD number, is simply a four bit value representing numbers from 0 to 9 .
(It's the same as hexadecimal, except that the combinations from A to F are not valid.)

7 Segment Decoder

- A common type of decoder is used to take a numeric input, and produce outputs which will drive some sort of display.
- A binary coded decimal, or BCD number, is simply a four bit value representing numbers from 0 to 9 .
(It's the same as hexadecimal, except that the combinations from A to F are not valid.)
- A 7 segment display uses 7 LEDs in the shape of the number 8 to show any digit from 0 to 9 , depending on which segments are lit.

7 Segment Decoder

- A common type of decoder is used to take a numeric input, and produce outputs which will drive some sort of display.
- A binary coded decimal, or BCD number, is simply a four bit value representing numbers from 0 to 9 .
(It's the same as hexadecimal, except that the combinations from A to F are not valid.)
- A 7 segment display uses 7 LEDs in the shape of the number 8 to show any digit from 0 to 9 , depending on which segments are lit.
$B C D$ to 7 segment conversion is a good example of the use of a decoder.

Here's a BCD to 7 segment decoder, shown with a 7 segment display.

Operation for the input number 0

Operation for the input number 1

Operation for the input number 2

Operation for the input number 3

Operation for the input number 4

Operation for the input number 5

Operation for the input number 6

Operation for the input number 7

Operation for the input number 8

Operation for the input number 9

For a BCD to 7 segment decoder, hexadecimal inputs from A to F are not valid, so the behaviour in this example has not been specified.

For a BCD to 7 segment decoder, hexadecimal inputs from A to F are not valid, so the behaviour in this example has not been specified.
There may be additional inputs on a decoder such as this to do things like turn all of the segments on or off for testing purposes.

