PC212 Tutorial Problem Wilfrid Laurier University

Terry Sturtevant

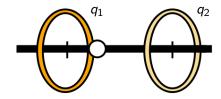
Wilfrid Laurier University

May 3, 2011

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

- 4 回 ト - 4 回 ト

DQC2

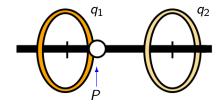

Definition Before Math Calculations Check

Definition

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Definition

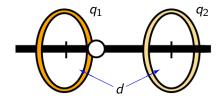

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

イロト イヨト イヨト イヨト

Ξ

Definition Before Math Calculations Check

Definition

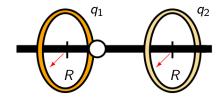

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Definition

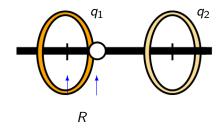

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Definition

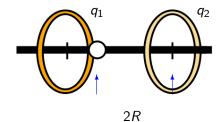

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

イロト イヨト イヨト イヨト

Ξ

Definition Before Math Calculations Check

Definition

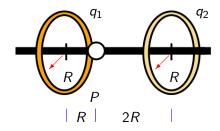

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Definition



< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Definition

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

<ロ> <同> <同> < 同> < 同>

Ξ

Chapter 22 - Problem 23, 9th edition	Definition Before Math Calculations Check
--------------------------------------	--

$$\left|\vec{E}\right|_{P,net} \equiv 0$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\left|\vec{E}\right|_{P,net} \equiv 0$$

What is the ratio q_1/q_2 ?

Definition Before Math Calculations Check

Before Math

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Before Math

By symmetry

$$\left|\vec{E}\right|_{P,net} \equiv |E_x|_{P,net}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

<ロト < 部 ト < 注 ト < 注 ト 三 注</p>

Definition Before Math Calculations Check

Before Math

By symmetry

$$\left|\vec{E}\right|_{P,net} \equiv |E_x|_{P,net}$$

since the x-axis passes through the centre of each ring.

・ロト ・ 日 ト ・ モ ト ・ モ ト

3

Definition Before Math Calculations Check

Furthermore,

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Since q_1 and q_2 are on *opposite* sides of *P*, then they must have the *same* signs on their charges for their fields to cancel.

(日) (同) (三) (三)

DQC2

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Since q_1 and q_2 are on *opposite* sides of *P*, then they must have the *same* signs on their charges for their fields to cancel. Thus the *sign* of q_1/q_2 is **positive**.

<ロ> <同> <同> < 同> < 同> < 同>

3

DQ P

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Since q_1 and q_2 are on *opposite* sides of *P*, then they must have the *same* signs on their charges for their fields to cancel.

Thus the sign of q_1/q_2 is **positive**.

Also, since q_2 is farther away, it has to be bigger to match the field of q_1 , so the *magnitude* of q_1/q_2 is **less than one**.

イロト イポト イヨト イヨト

-

SQR

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Since q_1 and q_2 are on *opposite* sides of *P*, then they must have the *same* signs on their charges for their fields to cancel.

Thus the sign of q_1/q_2 is **positive**.

Also, since q_2 is farther away, it has to be bigger to match the field of q_1 , so the *magnitude* of q_1/q_2 is **less than one**. So.

 $0 < q_1/q_2 < 1$

イロト イポト イヨト イヨト 三日

SQR

Definition Before Math Calculations Check

Furthermore,

$$|E_x|_{P,net} = |E_{xP1} + E_{xP2}|$$

Since q_1 and q_2 are on *opposite* sides of *P*, then they must have the *same* signs on their charges for their fields to cancel.

Thus the sign of q_1/q_2 is **positive**.

Also, since q_2 is farther away, it has to be bigger to match the field of q_1 , so the *magnitude* of q_1/q_2 is **less than one**. So.

$$0 < q_1/q_2 < 1$$

 $(q_2 = q_1 \equiv 0 \text{ is trivial})$

イロト イポト イヨト イヨト

-

SQR

Definition Before Math Calculations Check

Calculations

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Calculations

Since all points on each ring are at the same distance and angle from P,

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

《日》《圖》《臣》《臣》

3

Definition Before Math Calculations Check

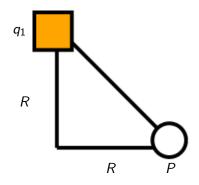
Calculations

Since all points on each ring are at the same distance and angle from P, then each ring can be treated as a **point charge** at a distance R from the x-axis.

<ロ> <同> <同> < 同> < 同>

DQC2

-

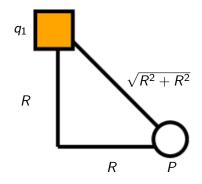

Definition Before Math Calculations Check

Ring 1

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Ring 1



< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Ring 1

< ロ ト < 団 ト < 臣 ト < 臣 ト</p>

Ξ

Definition Before Math Calculations Check

Ring 1

<ロ> <同> <同> < 同> < 同>

Ξ

Definition Before Math Calculations Check

$$\left|\vec{\mathcal{E}}_{P1}\right| = \frac{1}{4\pi\epsilon_0} \frac{q_1}{(R^2 + R^2)}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{vmatrix} \vec{E}_{P1} \end{vmatrix} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{(R^2 + R^2)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{2R^2}$$

<ロト < 回 > < 三 > < 三 > < 三 > の < で

Definition Before Math Calculations Check

$$\begin{vmatrix} \vec{E}_{P1} \end{vmatrix} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{(R^2 + R^2)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{2R^2}$$

 $E_{xP1} = \vec{E}_{P1} \cos \theta_1$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{vmatrix} \vec{E}_{P1} \end{vmatrix} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{(R^2 + R^2)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{2R^2}$$

 $E_{xP1} = \vec{E}_{P1} \cos \theta_1$

$$= \vec{E}_{P1} \frac{R}{\sqrt{2R^2}}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

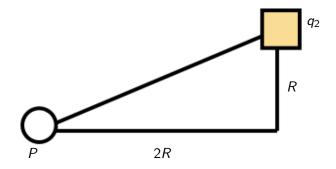
Definition Before Math Calculations Check

$$\begin{vmatrix} \vec{E}_{P1} \end{vmatrix} = \frac{1}{4\pi\epsilon_0} \frac{q_1}{(R^2 + R^2)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_1}{2R^2}$$

 $E_{xP1} = \vec{E}_{P1} \cos \theta_1$

$$= \vec{E}_{P1} \frac{R}{\sqrt{2R^2}}$$
$$= \vec{E}_{P1} \frac{1}{\sqrt{2}}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

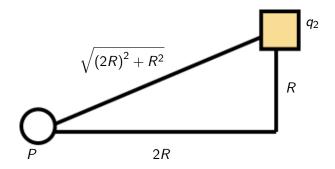

Definition Before Math Calculations Check

Ring 2

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

Ring 2

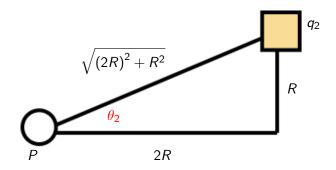

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

イロト イヨト イヨト イヨト

Ξ

Definition Before Math Calculations Check

Ring 2


Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

イロト イヨト イヨト イヨト

Ξ

Definition Before Math Calculations Check

Ring 2

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

イロト イヨト イヨト イヨト

Ξ

Definition Before Math Calculations Check

$$\left|\vec{E}_{P2}\right| = \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{vmatrix} \vec{E}_{P2} \end{vmatrix} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + 4R^2\right)}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{aligned} \left| \vec{E}_{P2} \right| &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + 4R^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{5R^2} \end{aligned}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\vec{E}_{P2} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + 4R^2\right)}$$
$$= \frac{1}{4\pi\epsilon_0} \frac{q_2}{5R^2}$$

 $E_{\rm xP2} = \vec{E}_{\rm P2} \cos \theta_2$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{aligned} \left| \vec{E}_{P2} \right| &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + 4R^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{5R^2} \end{aligned}$$

 $E_{\rm xP2} = \vec{E}_{\rm P2} \cos \theta_2$

$$= \vec{E}_{P2} \frac{2R}{\sqrt{5R^2}}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$\begin{aligned} \left| \vec{E}_{P2} \right| &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + (2R)^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{\left(R^2 + 4R^2\right)} \\ &= \frac{1}{4\pi\epsilon_0} \frac{q_2}{5R^2} \end{aligned}$$

 $E_{\rm xP2} = \vec{E}_{\rm P2} \cos \theta_2$

$$= \vec{E}_{P2} \frac{2R}{\sqrt{5R^2}}$$
$$= \vec{E}_{P2} \frac{2}{\sqrt{5}}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$|E_{xP1}| = |E_{xP2}|$$

means that

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$|E_{xP1}| = |E_{xP2}|$$

means that

$$\vec{E}_{P1}\frac{1}{\sqrt{2}} = \vec{E}_{P2}\frac{2}{\sqrt{5}}$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations Check

$$|E_{xP1}| = |E_{xP2}|$$

means that

$$\vec{E}_{P1} rac{1}{\sqrt{2}} = \vec{E}_{P2} rac{2}{\sqrt{5}}$$

SO

$$\frac{1}{4\pi\epsilon_0} \frac{q_1}{(2R^2)} \frac{1}{\sqrt{2}} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{(5R^2)} \frac{2}{\sqrt{5}}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● のへで

Definition Before Math Calculations Check

$$|E_{xP1}| = |E_{xP2}|$$

means that

$$\vec{E}_{P1} rac{1}{\sqrt{2}} = \vec{E}_{P2} rac{2}{\sqrt{5}}$$

SO

$$\frac{1}{4\pi\epsilon_0} \frac{q_1}{(2R^2)} \frac{1}{\sqrt{2}} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{(5R^2)} \frac{2}{\sqrt{5}}$$

which reduces to

$$\frac{q_1}{(2)}\frac{1}{\sqrt{2}} = \frac{q_2}{(5)}\frac{2}{\sqrt{5}}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Before Math Calculations Check

$$|E_{xP1}| = |E_{xP2}|$$

means that

$$\vec{E}_{P1} \frac{1}{\sqrt{2}} = \vec{E}_{P2} \frac{2}{\sqrt{5}}$$

SO

$$\frac{1}{4\pi\epsilon_0} \frac{q_1}{(2R^2)} \frac{1}{\sqrt{2}} = \frac{1}{4\pi\epsilon_0} \frac{q_2}{(5R^2)} \frac{2}{\sqrt{5}}$$

which reduces to

$$\frac{q_1}{(2)} \frac{1}{\sqrt{2}} = \frac{q_2}{(5)} \frac{2}{\sqrt{5}}$$
$$\therefore \frac{q_1}{q_2} = \frac{4\sqrt{2}}{5\sqrt{5}} \approx 0.51$$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition Before Math Calculations **Check**

Check

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations **Check**

Check

Since we determined that

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

Definition Before Math Calculations **Check**

Check

Since we determined that

 $0 < q_1/q_2 < 1$

Terry Sturtevant PC212 Tutorial Problem Wilfrid Laurier University

(日) (部) (臣) (臣) (臣)

Definition Before Math Calculations **Check**

Check

Since we determined that

 $0 < q_1/q_2 < 1$

we see that our answer fulfils that requirement.

《曰》 《圖》 《臣》 《臣》

 \equiv