
         

A P P E N D I X B
ELECTRICAL
CIRCUITS REVIEW
by Bruce M. Fleischer

This appendix is recommended reading if you want a review of electronics’ basic
ideas. Why, you may ask, does a digital circuit designer need to know this analog
“stuff”? You need it to understand the abilities and shortcomings of components
available in the real world, which must be used in building circuits that will work
in the real world.

A practical problem that motivates this appendix is the calculation of the
rise and fall times of a logic circuit output driving one or more inputs of other
logic circuits (see Section 3.6 of the text). That problem is really one of analog,
not digital circuits. Therefore, much of this appendix consists of building up
enough ideas from analog electronics to make a simple model for rise and fall
times.

B.1 FUNDAMENTALS

B.1.1 Charge

In the Bohr theory of the atom (named after Niels Bohr, 1885–1962), electrons electron
orbit a nucleus containing neutrons and protons. Attraction between the opposite neutron

protoncharges of electrons and protons keeps atoms together. Particles with the same
charge repel each other. You may wonder what attraction holds the nucleus
together, with all those protons. The answer is that the physicists have it all
under control, and be glad this isn’t an appendix on particle physics.

B–1
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The nearly equal numbers of electrons and protons in most objects, such
as a piece of fur, cancel out, so electrons in a neighboring object, such as an
amber rod, usually don’t feel any overall attraction for the fur. In some atoms,
however, the electrons are not as tightly held as in others, and there are situations
in which some electrons come loose.

For example, if we rub the amber rod on the fur, some of the electrons
from the fur end up on the amber. The fur is missing some electrons, while the
amber has extras. You can see the attraction of these charges for each other; the
hairs in the fur are pulled towards the rod. If the two are brought close enough,
some electrons in the rod will jump back to the fur, making a spark. The ancient
Greeks didn’t know about the Bohr model of the atom, but they were familiar
with fur and amber (which is just petrified tree sap); in fact, our word “electron”
comes from the Greek for amber.

Electric charge is measured in coulombs. An individual electron or protoncoulomb
has much much less than one coulomb of charge, −1.6×10−19 coulomb on an
electron, +1.6×10−19 on a proton. The decision to call the electrons negative
is simply a convention started by Benjamin Franklin (1706–1790). Nature says
only that an electron’s charge is the opposite of a proton’s; there is nothing
inherently negative about electrons, they could just as easily be called positive
and protons negative.

B.1.2 Voltage

The attraction of opposite charges means that energy is required to pull themenergy
apart, and that energy can be recovered when they come together again. In
between, we say that the energy is kept as potential energy. When a system haspotential energy
potential energy, it has the potential to do work. Work here just means a morework
visible form of energy, not necessarily something we want done.

The most familiar form of potential energy is gravitational potential energy.
Because of the gravitational attraction between the earth and the objects on it,
lifting objects gives them potential energy. When an object is dropped, that
potential energy is rapidly converted into kinetic energy, which is even more
rapidly converted into other forms of energy when the object hits something (e.g.,
sound, heat, kinetic energy of broken pieces). The more mass something has and
the higher we lift it, the more potential energy it has. Fans of David Letterman
(1947– ) may remember just how much potential for mayhem a bowling ball has
when lifted up six stories.

In electricity, the quantity analogous to height is voltage, usually indicat-voltage, V
ed by the symbol V. Voltage is measured in volts (symbol: V), named aftervolt (V)
Alessandro Volta (1745–1827). (Notational example: Vobject = 2.5 V.) In digital
circuits, we sometimes measure voltage in thousandths of a volt, or millivoltsmillivolt (mV)
(mV). Increasing the voltage of one coulomb of charge by one volt gives it one
joule (J) of electrical potential energy, named after James P. Joule (1818–1889).joule (J)

Because electrons have negative charge, we have to take electrons from a
higher to a lower voltage to increase their potential energy. This is what happens
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in a battery: electrons go into the positive terminal and come out of the negative
terminal with more potential energy, which is converted to other forms of energy
as the electron travels “up” through the circuit. There is a special unit for the
amount of energy one electron gets when its potential is reduced by one volt, an
electron-volt (symbol: eV), which equals 1.6×10−19 J. electron-volt (eV)

There are several lessons to remember about voltage and potential energy.
One is that nearly all everyday systems have tremendous reservoirs of potential
energy of various kinds, and any give and take of potential represents a minuscule
fraction of a system’s total potential energy.

As a simple example, shown in Figure B–1, get a fresh bowling ball and
carry it up one story, giving it one bowling-ball-story (bbs) of gravitational bbs
potential energy. Then drop it back to ground level to let loose that 1 bbs of
energy. Does the bowling ball now have no potential energy? Certainly not—if
you stand in a ditch under it, it clearly has lots of potential!

0 bbs potential
0 bbs kinetic ~0 bbs potential

~1 bbs kinetic

0 bbs potential?

–1 bbs potential?

0 bbs potential
0 bbs kinetic
1 bbs heat & sound

1 bbs potential
0 bbs kinetic

Figure B–1
Bowling balls and energy.

Stepping out of the way, let the ball drop into the ditch. Does it have −1 bbs
of potential energy now? Clearly, some sort of convention needs to be set up
here. We could try to find an absolute scale, say with 0 corresponding to ball at
the center of the earth, but that would cause more problems than it would solve.

There are two workable conventions. The first is to consider potential
energy as a purely relative term, and always speak of potential differences: the
ball on the second floor has 1 bbs more potential than the one on the ground,
and the one in the ditch is at −2 bbs relative to the second floor.

The second, shortcut convention uses the fact that many things sit at ground
level. Thus, when we talk about the ball’s potential at a given spot, we can imply
the comparison, “relative to ground level.” In this convention, “zero potential”
just means that something is at ground level, not that it has absolutely no potential
energy.
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In electrical terms, we can use the full form to describe the voltage differ-
ence, or voltage drop, between two points, or we can use the short form and talk
about the voltage at a point. The short form always implies an unspoken com-
parison with a common reference point. In most circuits that common reference
point is called ground, and may actually be connected to the ground through aground
water pipe, but it is not at zero volts in any absolute sense. (Strange problems,
and sometimes fireworks, can result from connecting circuits whose “grounds”
have a voltage difference between them.)

B.1.3 Current

Electrical current has the same relation to charge as a river’s current does tocurrent, I
water; it is the rate at which charge crosses a line cutting through part of the
circuit. Current is usually indicated by the symbol I and is measured in amperes,ampere (A)
or amps (symbol: A), named after A. M. Ampère (1775–1836). One ampereamp
equals one coulomb per second (s). In digital circuits, we seldom have currentssecond (s)
as high as one amp flowing into a single device. More often, we deal with
currents of milliamperes (mA) and microamperes (µA).milliampere (mA)

microampere (µA) Like the flow of water, current has a size and direction. Usually, we decide
on a direction beforehand, and then call current flowing that way positive and
the other way negative. The one tricky thing about electrical current is that in
electronic circuits, the protons stay put and the (negatively charged) electrons
move around. If 6.25×1018 electrons per second flow through a wire from left
to right, we can call that current −1 A flowing to the right or 1 A flowing to the
left.

As shown in Figure B–2, the convention is that a certain current flows in the
direction in which positive charge would move to make that current, which is the
opposite of the direction in which electrons actually flow. To explicitly indicate
the use of this convention, current is sometimes called positive current. If thispositive current
seems confusing at first, blame it on Ben Franklin. We’re all too committed to
this system to flip things around, so you might as well get used to it.

Figure B–2
Conventions for current flow.

1 A

1 coulomb/sec

–1 A

–1 coulomb/sec6.25×1018

electrons/sec

B.1.4 Circuits

The schematic diagrams that we use to represent circuits on paper are similar
to figures studied in graph theory, a topic in abstract mathematics. We can
use some ideas from graph theory to make formal rules about how circuits work.
Fortunately, the abstract ideas we need can be directly related to physical circuits;
there isn’t any heavy math here.
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Figure B–3
A graph.

node

branch
loop

An example of a graph is shown in Figure B–3. It is made of points, called graph
nodes, connected by lines, called branches. The only other abstract concept we node

branchneed is a loop, which is just a path starting at some node, passing through a
loopsequence of nodes and branches, and returning to the starting node. A direction

is associated with each branch in the loop when we specify the loop’s direction.
The graph in Figure B–3 looks like a circuit diagram, albeit a boring one.

We could use it to represent a circuit, though, with some rules for transforming
schematics into graphs. It’s simpler, however, just to refer to schematics as if
they were graphs. When we do, there are two concepts we need to consider.

The first concept is the difference between nodes and connection dots. A
node is any “point” in a circuit, as shown in Figure B–4. Part (a) indicates that
there is a node between the resistors, although we wouldn’t put a connection
dot there. The points where we do put connection dots, as in (b), generally
correspond to nodes. The circled part of the schematic in (c) would usually be
considered to be a single node, unless the connecting wiring is so nonideal that
it must be treated as additional components.

Figure B–4
Nodes and branches.

(a) (b) (c)

node node node

The second concept is how to treat components, as shown in Figure B–5.
Two-lead components, such as resistors, are like single branches with a node at
each end. Transistors and other larger components have at least one node per
lead. Depending on how much detail we’re interested in, we might imagine that
there are one or more internal nodes also; that way we can give names to the
voltages at and currents in each of the components’ leads.

If a circuit diagram includes a node for ground, then the “single-ended” volt-
age at a node means the voltage difference from there to ground. The branches
in the circuit diagram indicate physical paths through which current can flow,
such as wires. Because current can’t jump out of the circuit, the current flowing
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Figure B–5
Components.

VB

IB

IC

IEVE

VC

one or more unnamed
internal nodes

in a branch is the same anywhere along the branch. In other words, there is a
definite value of current in each branch of the circuit. There is also a voltage
drop (a “differential” voltage) along each branch, the voltage difference between
the nodes it connects. The one term you should avoid is the current at a node;
always refer to the current through some branch of a circuit.

Once we’ve picked a direction for a branch, its current (or voltage drop) is
a positive or negative number depending on whether the current flows (or voltage
decreases) in the chosen direction. Figure B–6 shows part of a circuit diagram
with several named voltages and currents. The + and − signs and the arrows
show which polarity of voltage or current is called positive.

Figure B–6
A circuit diagram with explicit
voltages and currents.

VR1

VX

IR1

VCC = 5V

VDID

R1

R2

Using the terms defined above, we can write down two basic laws that apply
to all circuits. They are called Kirchhoff’s current law (KCL) and Kirchhoff’sKirchhoff’s current

law (KCL)
Kirchhoff’s voltage

law (KVL)

voltage law (KVL), after Gustav Robert Kirchhoff (1824–1887).

KVL The sum of the voltage drops around any loop is zero.

KCL The sum of the currents into any node of a circuit is zero.

All these laws really say is that the business of assigning voltages to nodes, and
currents to branches, is consistent.

KVL is like saying: if you start at any point in a building and follow any
path (up and down stairs, elevators, and escalators) that comes back to the same
point, the net number of stories you went up or down is zero.

One way of restating KCL is to say that nodes don’t store charge; any
current that comes into a node through one connection has to go out through
another. Implicit in KCL is a rule about components: any current going into a
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component through one lead must come out elsewhere. A resistor, for example,
has two leads. Current can go through a resistor, but can’t accumulate there.1

Kirchhoff’s laws may seem obvious. In a way, that’s their point: to for-
malize the basic ideas we take as axioms. They’re not proof that our picture
makes sense, just a formal statement of the rules we use. In other words, they’re
a way of avoiding lame answers like “that’s how electricity works.” When we
calculate series and parallel resistances in the next section and you ask “why can
you make that step?” we can point to Kirchhoff’s laws.

What makes Kirchhoff’s laws true? That’s how electricity works. This may
not seem like much of an improvement, but at least we know exactly what we
need to have faith in, which is about the most you can hope for in science.

B.2 RESISTORS AND EQUIVALENT CIRCUITS

B.2.1 Ohm’s Law and Resistors

Take a chunk of any material and hook up two wires to it, to make a two-
lead component. Call the voltage across the component Vchunk, and the positive
current flowing through the component Ichunk. For most materials, the current in
a component made in this way would be proportional to the voltage. The ratio
Vchunk / Ichunk is R, the component’s resistance, and is measured in ohms (symbol: resistance, R

ohmΩ), named after Georg Simon Ohm (1787–1854).
The equation V = I ⋅ R is called Ohm’s law. Either current or voltage can Ohm’s law

be thought of as the driving term. A resistance of one ohm means that one
volt is required to get one amp to flow, or that a current of one amp produces
a voltage drop of one volt. Because such a component can be described by
giving its resistance, it is called a resistor. Most of the resistors used in real resistor
circuits have resistances of many ohms, so larger units are used for convenience
(1 kΩ = 1000 Ω, 1 MΩ = 1000 kΩ). In circuit diagrams, a resistor is usually
drawn together with a name and its resistance, often with the “Ω” omitted from
the resistance (e.g., 470, 10k) since no other units would be appropriate.

If any number of resistors are connected in a network with two external
terminals, the resulting object is also a resistor. That is, the total current flowing
through the network from one terminal to the other is proportional to the voltage
between the two terminals. Careful application of Kirchhoff’s laws and some
linear algebra can be used to calculate the resistance of any such network, but
most of the circuits you’ll work with don’t need this level of math. Usually, a
couple of simple rules about series and parallel combinations, given below, are
enough. These rules can be derived from Kirchhoff’s laws, but will be easier to

1Those of you who are ahead of the game may protest this statement, because we can always
force some charge onto any finite-sized component. The response is that to do so changes the
voltage on that component, and the proper model includes a capacitance to ground from at least
one interior node. When current through this capacitor is included, the terminal currents of the
component sum to zero.
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apply and will seem almost obvious given the right intuitive picture of current
and resistance.

The bowling-ball analogy, used earlier to introduce the concept of voltage,
suggests that current flowing in a resistor might be something like a bowling-
ball waterfall. This is not the right intuitive picture; in fact, it is best to avoid
picturing individual electrons at all when thinking about macroscopic currents.

Instead, water flowing in pipes provides a better analogy for electric current.
Pressure represents voltage, current is current, and resistance is resistance (see
Figure B–7. Fat pipes are the wires, and capillary tubes or pipes packed with
porous material are resistors. The flow through such a resistor is proportional to
the pressure imposed across it. To make the resistance greater, finer packing can
be used, or the tube can be made narrower or longer. Coarser packing or a shorter
or fatter piece of tubing reduces the resistance. The discussion to follow is given
in electrical terms, but you can translate it to this “water in pipes” vocabulary if
you want.

Figure B–7
Water-pipe analogy for resis-
tance.

flow

pressure+ –

(a) (b)

The simplest resistor combination is two identical resistors in series, asseries resistance
shown in Figure B–8(a). The current is the same in the two resistors, so the total
voltage drop is just double the drop across one. Therefore, the resistance (V/ I
ratio) of the combination is twice that of a single resistor, or 2 R. In the more
general case in (b), the resistance of any number of resistors in series is the sum
of the individual resistances:

Rseries = R1 + R2 + ⋅ ⋅ ⋅ + Rn

If one of the resistors has a much larger value than the others, it will dominate
the series resistance (a plugged pipe has about the same resistance regardless of
whether the unplugged section is short or long).

Take another look at the R + R series combination. If one end is grounded
and the other is connected to a known voltage, as in Figure B–9(a), what’s the
voltage at the node between the resistors? The answer is obvious: Vout = VCC / 2.
This circuit is an example of a voltage divider. A voltage divider takes twovoltage divider

Figure B–8
Series resistance: (a) identical
resistors; (b) different resistors.

(a)

(b)

R R 2R

R1 R2 Rn Rseries
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Figure B–9
Voltage dividers: (a) identical
resistors; (b) different resistors.

VOUT = ?

VCC VCC = 5 V

R

R

VOUT = 0.05 V

R1
99 kΩ

R2
1 kΩ

(a) (b)

voltages (one of which can be ground, but doesn’t have to be) and produces a
new voltage that is between them, dividing the original voltage difference into
two smaller voltages.

Given the two input voltages, a divider’s output voltage is set by the ratio
of the resistors. It is halfway between the inputs if the resistors are equal, and
is closer to one input if the resistor on that side is smaller. The divider in
Figure B–9(b), for example, has an output voltage of 0.05 V. This result is easy
to calculate, assuming that the current is the same through both resistors. If any
current enters or leaves the divider at Vout, this assumption does not hold, and
the output voltage is harder to see intuitively. We’ll return to this point later.

When resistors are arranged to offer parallel paths for the current, the parallel resistance
combination’s resistance is less than that of the individual resistors. Once again,
the simplest case uses two identical resistors, as in Figure B–10(a). Both resistors
see the same voltage drop, but now the total current is the sum of the two currents.
Therefore, the net resistance is R / 2.

(a)

R R R/2

(b)

R1 R2 Rn Rparallel

Figure B–10 Parallel resistance: (a) identical resistors; (b) different resistors.

The general case in Figure B–10(b) is easiest to work out if we think in
terms of 1 / R = I / V, called the conductance or admittance. Because the total conductance

admittancecurrent through parallel resistors is just the sum of the individual currents (all
resulting from the one applied voltage), the conductance of resistors in parallel
can be written as the sum of individual conductances:

1
Rparallel

=
1

R1
+

1
R2

+ ⋅ ⋅ ⋅ +
1

Rn

The symbol “||” is frequently used as shorthand for “in parallel”: ||

Rparallel = R1 || R2 || ⋅ ⋅ ⋅ || Rn
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When there are only two resistors, the formula is often written in this form:

R1 || R2 =
R1 ⋅ R2

R1 + R2

If one resistor has a much smaller resistance (larger conductance) than the others,
it dominates the parallel combination. Resistors in parallel can be viewed as a
current divider, although they’re seldom used that way.

Sometimes we find a network of resistors that is not a simple series or
parallel combination, but that can be solved by successive applications of the
series and parallel formulas above (see Exercise B.3). Some networks are just
too complicated to analyze with these rules. As noted above, however, the
resistance can always be found through more explicit use of Kirchhoff’s laws
(see Exercise B.4).

B.2.2 Power

Batteries and power supplies give energy to the electrons passing through. In
most circuits, the electrons’ energy is converted to heat as the electrons flow
through the circuit back to the supply. Heat is produced any time that current
flows through a voltage drop, so the electrons come out having less potential
energy than when they went in.

The power dissipation, P, is the rate at which electrical energy is convertedpower dissipation, P
to heat energy, and is given by the voltage (energy/charge) times the current
(charge/s). The unit for power is the watt (symbol: W), named after James E.watt
Watt (1736–1819); 1 W = 1 V-A = 1 joule / s .

Most of the heat dissipated by TTL circuits comes from the circuits’ internal
resistors. Because the current through a resistor is proportional to the voltage
across it, power goes as the square of the voltage or current. One line of algebra
gets you from Ohm’s law to P = I2 ⋅ R = V2 / R.

B.2.3 Thévenin Equivalent

The symbol for an ideal voltage source is shown in Figure B–11. This hypothet-ideal voltage source
ical device creates a voltage difference between its terminals that is independent
of the current through those terminals. Like irresistible forces and immovable ob-
jects, ideal sources are only abstractions, but are useful in describing the behavior
of real sources, such as batteries. The voltage difference between a battery’s ter-
minals is nearly independent of the current taken from it, but if you pull enough
current out of a battery, its voltage will drop noticeably.

Figure B–11
An ideal voltage source.

VCC
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Figure B–12
Model for a real voltage source—
a battery.

1.5 V

Voc
Vout

Iout

1.
5 

V

1.5 V

1 Ω

One way to describe this behavior of a real battery is to say that it acts
like, or is modeled by, the circuit in Figure B–12, an ideal voltage source in
series with a resistor. If the circuit doesn’t have to supply any current, there is
no drop across the resistor, and the source’s voltage appears across the terminals
(this is called the battery’s open-circuit voltage, Voc). If the battery’s terminals open-circuit voltage
are shorted together, the source’s (unchanged) voltage is dropped entirely in the
resistor, and the current through the short (the battery’s short-circuit current) is short-circuit current
Voc / Rout = (1.5 V) / (1 Ω) = 1.5 A.

More completely, we can write a general formula relating the model’s cur-
rent and output voltage:

Vout = Voc − Iout ⋅ Rout

This linear model has two parameters, Voc and Rout, that can be found from
two measurements of Vout and Iout, such as the open-circuit voltage (Vout given
Iout = 0) and the short-circuit current (Iout at which Vout = 0).2

Thévenin’s theorem (named for Charles Leon Thévenin, 1857–1926) proves
that any network of resistors and ideal voltage sources with only two terminals
is equivalent to a single source in series with a resistor (see Figure B–13). The
smaller circuit, called the Thévenin equivalent, is equivalent in the sense that Thévenin equivalent
it has the same I-V characteristics (the full circuit may dissipate more power
than its Thévenin equivalent). As shown in the figure, the voltage and resistance
used in the equivalent circuit are called VTh and RTh, the Thévenin voltage and Thévenin voltage
Thévenin resistance. These parameters can be found from two measurements of Thévenin resistance
the circuit’s voltage and current, as described in the preceding paragraph.

To illustrate Thévenin equivalent circuits, let’s take another look at the
voltage divider in Figure B–9(a), with VCC = 5 V. With no load connected to
Vout, the output voltage is obviously 2.5 V. What happens when we try to use that
voltage, though? Figure B–14(a) shows a similar divider driving a load resistance
(Rload) of 2 kΩ. It’s not impossible to find Vout now, thinking of all the resistors as

2Real batteries or voltage sources are even less ideal than our model allows—the voltage is not
necessarily a linear function of the current. One way to get around this is to use a linear model, but
state that it only applies over a limited range. That is, we could say that the battery acts like the
model in the figure, with Voc = 1.5 V and R = 1 Ω, for output currents between 0 and 100 mA. The
measurements from which the parameters are found (or extracted) must be made within the stated
range. Outside that range, the battery’s behavior would have to be described by other parameter
values, or perhaps even by a different model, such as one including flames or oozing chemicals.
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VTh

RTh

Vout

Iout

Vout

Iout

Figure B–13
Thévenin equivalent circuit.

one network, but it’s easier to replace the source-plus-divider with its Thévenin
equivalent, as shown in Figure B–14(b). Looking at the resulting divider, we
see that Vout is 2.0 V. You might try putting in different load resistances and
recalculating Vout. Which approach is easier when you do this?

Thévenin equivalents make calculations easier once we have them, but you
may wonder where the foregoing values of VTh and RTh came from. A network’s
Thévenin voltage is just the network’s open-circuit voltage, and is often pretty
easy to figure out. One way to find the Thévenin resistance, which equals Rout,
is to calculate the network’s short-circuit current and then solve for Rout from
that and the open-circuit voltage. This approach is a bit messy, but if you work
through it, you’ll get

RTh =
R1 ⋅ R2

R1 + R2

At least you only have to do that once, and the answer is easy to remember
because it equals R1 || R2. Actually, that equality is no coincidence. It’s a conse-

(a) (b)

5 V VOUT = ?

R1
1 kΩ

R2
1 kΩ

Rload

2 kΩ

VTh
2.5 V

RTh

0.5 kΩ
VOUT = 2 V

Rload

2 kΩ

Figure B–14 Using the Thévenin equivalent: (a) a voltage divider under load;
(b) Thévenin equivalent.
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quence of a theorem that says: If you replace all voltage sources in a network with
shorts (i.e., set them to 0 V sources) and open all current sources, the resistance
of the resulting network equals the Thévenin resistance of the original network.

B.3 CAPACITORS

A capacitor is a component that stores charge. The simplest capacitor is made capacitor
from a pair of parallel metal plates, as shown in Figure B–15 (it’s called a
parallel-plate capacitor). Let’s say that we take some electrons out of one plate, parallel-plate

capacitorleaving it positively charged, and put them on the other plate, making it negatively
charged. It’s not hard to see that there’s now a voltage difference between the
two plates.

Try grabbing an electron on the positive plate and moving it over to the
negative plate. It is attracted to the positive charge behind it and repelled by the
electrons in front, so you’ve got to push to move it. That push gives it potential
energy, which means that its voltage is decreasing. The more charge there is
on the plates, the more push is needed, and therefore the bigger the voltage
difference between the plates. In a resistor, current and voltage are proportional,
but in a capacitor, charge and voltage are proportional. The proportionality is
usually expressed as

Q = C ⋅ V

where Q represents the charge on the first plate (in coulombs), V is the voltage
between the plates (positive if the first plate is at the higher voltage), and C is the
capacitance of the capacitor, which is measured in farads (symbol: F), named capacitance, C

faradafter Michael Faraday (1791–1867).
A capacitance of one farad means that putting +1 and −1 coulomb on the

plates makes the voltage drop 1 V. You can also think of it the other way around:
at a voltage of 1 V, a 1-farad capacitor holds 1 coulomb. Most capacitors are
much smaller than 1 farad, so they’re usually measured in picofarads (1 pF = picofarad, pF
10−12 F) or microfarads (1 µF = 10−6 F). microfarad, µF

The capacitance of a parallel-plate capacitor is directly related to the size
and spacing of the plates. With the amount of charge fixed, pulling the plates
farther apart takes work, and therefore increases the voltage drop. Said the other
way, the farther apart the plates are, the less charge is accumulated per volt.
Capacitance decreases for farther plates and increases for closer plates. Also, the

Figure B–15
A parallel-plate capacitor.

V I
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more area each plate has, the more charge can be stored, so a bigger area also
means more capacitance.

One way to get a large capacitance in a small space is to use large sheets
of very thin foil for the plates with a thin spacer to hold them apart, and roll
everything up like a jellyroll. Larger capacitors, 1 µF and above, are often made
this way. Smaller capacitors look more like the parallel-plate model, although
their plates are usually separated by a solid material, such as ceramic or mica,
rather than air. This material, called the dielectric, supports the metal plates anddielectric
helps the capacitor hold more charge.

Can other components, such as resistors or transistors, build up charge? If
we stick electrons on a component, they’ll make it harder to stick more on—and
the component’s voltage will drop. But remember, that’s the voltage relative to
ground. We can describe this effect by imagining that there are little capacitors
between every part of every circuit and ground. The size of each capacitor tells
us how much charge gets stored on that part of the circuit per volt.

As mentioned previously, changing the voltage across a capacitor requires
changing the charge stored on each plate of the capacitor, which requires current
through the capacitor. Each electron that goes in one lead of a capacitor can’t
come out the other lead because of the gap between the plates, but it does “push”
one electron from the other plate out through the other lead. In a resistor, a fixed
current creates a fixed voltage drop, but in a capacitor, a fixed current creates a
steadily increasing voltage drop as charge accumulates on the plates. It’s easy
to put this relationship is quantitative terms. First, since the charge on one plate
has to come through the attached lead, we can write

I = dQ / dt

We can take the derivative of charge equation Q = C ⋅ V and combine it with the
preceding equation to derive the following equations:

dQ / dt = C ⋅ dV/ dt

I = C ⋅ dV/ dt

dV/ dt = I / C

Thus, we can’t instantly change the voltage across a capacitor, because that would
require an infinite current. Capacitors are often explicitly placed at nodes (such
as the power supply) where we want to hold a steady voltage. On the other
hand, unavoidable stray circuit capacitances can prevent voltages from changing
as fast as we might like them to, as we’ll see in the next section.

B.4 RC CIRCUITS

Changing the voltage on a capacitor requires current. If that current must flow
through a resistor, it requires a voltage across the resistor. If that voltage decreas-
es as the capacitor charges, the current and the rate of charging will decrease
exponentially with time.
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Figure B–16
RC discharge.
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For example, consider the circuit in Figure B–16. The circuit starts with
switch S1 closed and switch S2 open, so the capacitor is charged to VCC = 5 V
and no current can flow through the resistor. Now, suppose that we disconnect the
voltage source by opening S1 and then start our stopwatches (or oscilloscopes) as
we close S2. With S2 closed, notice that VR = Vcap and IR = −Icap (if you agree,
then you understand Kirchhoff’s laws). We can write another two equations
relating these variables, from the rules for resistors and capacitors:

IR = VR / R

dVcap / dt = Icap / C

Substituting into the last equation we get

dVcap / dt = Icap / C

= −IR / C

= −Vcap / RC

The solution to this equation is

Vcap(t) = Vcap(0) ⋅ e−t / RC

= VCC ⋅ e−t / RC

In words, the capacitor’s voltage decreases exponentially, with a time constant
equal to RC. In order for the solution to make sense, the units for an RC
product must be units of time, and this is indeed the case (1 Ω × 1 F = 1 s,
1 MΩ × 1 µF = 1 s, 1 kΩ × 1 pF = 1 ns).

Now open S2, and close S1 again, as in Figure B–17, so Vcap goes back
to 5 V. Does Vcap change instantaneously? Not in a real circuit, it doesn’t. To
make our figure a more accurate model, we need to include some resistance in
series with the switch. This resistor, labeled R2 in Figure B–17, can represent the
resistance of the switch itself, or of a transistor serving as the switch, or perhaps
of the voltage source. In any case, using the voltages and currents indicated in
the figure, and ignoring R since no current can flow through it, we can now write

dVcap / dt = (VCC − Vcap) / R2C
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Figure B–17
RC charge.
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If the capacitor starts with no charge at t = 0, the solution to this equation is

Vcap(t) = VCC ⋅ (1 − e−t / R2C)

The capacitor’s voltage approaches 5 V with an exponential time constant equal
to R2C. We can also write down the solution for an arbitrary initial voltage:

Vcap(t) = VCC + (Vcap(0) − VCC) ⋅ e−t / R2C

This solution reduces to the previous one if Vcap(0) = 0. Actually, the simple RC
discharge is also a special case of this solution, with VCC = 0.

The natural next step is to close both switches at the same time. It is
possible, using Kirchhoff’s laws, to write equations relating all the voltages and
currents, and get a new differential equation for Vcap. There is, however, a
much easier and much more intuitive way to figure out what happens, using
the Thévenin equivalent of the divider. First, redraw the schematic so that the
capacitor is separate, as in Figure B–18(a). Now the rest of the circuit can be
replaced by its Thévenin equivalent, as in (b). The equivalent circuit has the same
form as the charging circuit that we just analyzed, so the capacitor’s voltage is

Vcap(t) = VTh + (Vcap(0) − VTh) ⋅ e−t / RThC

As discussed above, a divider’s Thévenin voltage is just its open-circuit voltage,
and its Thévenin resistance is the parallel combination of the two resistors.

More complicated problems can often be solved with this approach. Just
move the capacitor off to one side, and draw a box around everything else. Since
“everything else” is a two-terminal circuit, a Thévenin equivalent can be found,
and the equation above can be used.

Figure B–18
Charging circuit: (a) redrawn;
(b) Thévenin equivalent.

C
VCC
5 V

R2

R CVTh

RTh

(a) (b)

Vcap Vcap



          

EXERCISES B–17

E X E R C I S E S

B.1 Over the lifetime of a D-size battery (2000 mA-hr capacity), how many electrons
flow out of the negative terminal? Be more specific than “billions and billions.”

B.2 There is one electronic device that is something like a bowling-ball waterfall in the
“electrons as bowling balls” analogy. That device is a cathode ray tube (CRT), used
in televisions and computer displays. The electron gun in a CRT gives electrons a
whole lot of potential energy with a high-voltage power supply, then converts all
of that potential to kinetic energy as the electrons are fired at the face of the tube.
The molecules of phosphor, a chemical coated on the inside of the tube, receive phosphor
the electrons’ kinetic energy and radiate it away as visible light.

Consider a computer display that accelerates the electrons through a volt-
age drop of 18,500 volts, has a beam current of 85 µA, and scans the beam
across a display with 640×864 pixels, 69 times each second. An electron’s mass
is 9.1×10−31 kg. Ignoring relativistic effects, how fast do the electrons go? What
fraction of the speed of light is this? About how many electrons are used to light
up one pixel during one scan?

B.3 Calculate the resistance of the network in Figure XB.3.

Figure XB.3

10 kΩ 2 kΩ
2 kΩ

750 kΩ 1.5 kΩ

B.4 What is the resistance of the resistor cube in Figure XB.4? You could put a 1-volt
source across it, name the currents and voltage drops in every branch, use KCL
to write equations for every node, use KVL to write equations for every loop, and
solve them all to find the total current through the network. (Hint: There’s also a
sneaky but easier way.)

R = ?

(12) 1 kΩ resistors

Figure XB.4

B.5 The circuit in Figure XB.5 is a good current source, in that its output current is
nearly independent of its output voltage. When its output voltage is 0 V, it supplies
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1 mA of current, and at 3 V, it supplies 0.97 mA. Draw the Thévenin equivalent
of this circuit (called a current mirror). (You don’t have to understand transistorcurrent mirror
circuits to do this—you already have all the information you need.) Where does
high-voltage source come from? (You do need to understand transistor circuits for
this part.)

Figure XB.5
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B.6 Thévenin equivalents are most natural for networks that we think of as almost ideal
voltage sources. As Exercise B.5 showed, the Thévenin equivalent of a circuit that
is close to an ideal current source can seem pretty strange.

The symbol for an ideal current source (current independent of voltage) is
shown in Figure XB.6(a). Real current sources, of course, do not meet this ideal,
although we can often model them with a Norton equivalent (named after E. L.Norton equivalent
Norton, 1898– ), an ideal current source (INort) in parallel with a resistance (RNort),
as in (b). The Norton resistance makes the current vary somewhat with voltage.
Mathematically, Thévenin and Norton equivalents are equally applicable; either
can replace any network of resistors, voltage sources, and current sources.

Write INor and RNor in terms of VTh and RTh. Draw the Norton equivalent of
the current source in Exercise B.5.

Figure XB.6
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B.7 Show that the units of an RC product are time.

B.8 In the circuit of Figure B–18, assume that RTh = 1 kΩ and C = 1µF, and that VTh is
instantaneously changed from 0 V to 5 V. How long does it take for Vcap to reach
2.0 V?

B.9 In the circuit of Figure B–18, assume that RTh = 50 kΩ and C = 1µF, and that
VTh is instantaneously changed from 5 V to 0 V. How long does it take for Vcap to
reach 0.8 V?


