Electronics Other Devices

Terry Sturtevant

Wilfrid Laurier University

April 23, 2013

Terry Sturtevant Electronics Other Devices

E

• an electronic device which consists of two conductive plates separated by an insulator

3

Sac

- an electronic device which consists of two conductive plates separated by an insulator
- value, capacitance, is proportional to the surface area of the plates and inversely proportional to the distance between the plates

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

SQA

- an electronic device which consists of two conductive plates separated by an insulator
- value, capacitance, is proportional to the surface area of the plates and inversely proportional to the distance between the plates

measured in Farads

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

SQA

- an electronic device which consists of two conductive plates separated by an insulator
- value, capacitance, is proportional to the surface area of the plates and inversely proportional to the distance between the plates

measured in Farads

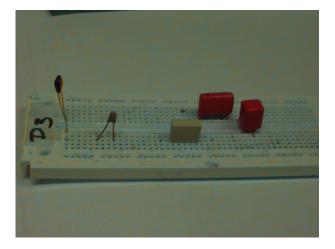
Farads are big

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

- an electronic device which consists of two conductive plates separated by an insulator
- value, capacitance, is proportional to the surface area of the plates and inversely proportional to the distance between the plates

measured in Farads


Farads are big

usually microfarad (μ F) or picofarad (pF) values are used

・ 同 ト ・ ヨ ト ・ ヨ ト

DQ P

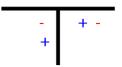
Capacitors Diodes

• Various capacitors

Terry Sturtevant Electronics Other Devices

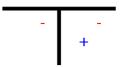
<ロト < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E



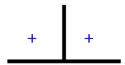
Capacitor uncharged

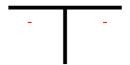
E


Capacitor charging; charge on opposite plates is equal and opposite.

3

SQC




Capacitor charging; charge on opposite plates is equal and opposite.

Э

SQC

Capacitor charged; no more change

E

• purpose is to store electrical charge.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ●

1

- purpose is to store electrical charge.
- current starts large, voltage starts at zero

3

- purpose is to store electrical charge.
- current starts large, voltage starts at zero as charge is stored, voltage increases and current decreases until the voltage equals the applied voltage, when current becomes zero

・ 同 ト ・ ヨ ト ・ ヨ ト ・

DQ P

• A capacitor's voltage may not exceed the maximum for which it is rated. **Big capacitors often have low maximum voltages.**

イロト イヨト イヨト

3

Sac

- A capacitor's voltage may not exceed the maximum for which it is rated. **Big capacitors often have low maximum voltages.**
- Capacitors may retain charge long after power is removed.

イロト イヨト イヨト

3

SQA

- A capacitor's voltage may not exceed the maximum for which it is rated. **Big capacitors often have low maximum** voltages.
- Capacitors may retain charge long after power is removed.
- For safety, large capacitors should be discharged before handling.

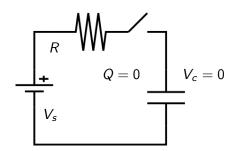
-

- A capacitor's voltage may not exceed the maximum for which it is rated. **Big capacitors often have low maximum** voltages.
- Capacitors may retain charge long after power is removed.
- For safety, large capacitors should be discharged before handling.

Place $1k\Omega \rightarrow 10k\Omega$ resistor across the terminals to discharge.

・ 同 ト ・ ヨ ト ・ ヨ ト

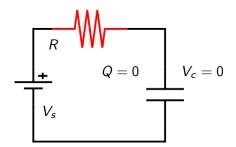
- A capacitor's voltage may not exceed the maximum for which it is rated. **Big capacitors often have low maximum voltages.**
- Capacitors may retain charge long after power is removed.
- For safety, large capacitors should be discharged before handling.


Place $1k\Omega \rightarrow 10k\Omega$ resistor across the terminals to discharge.

• High voltage capacitors should be stored with terminals shorted.

SQA

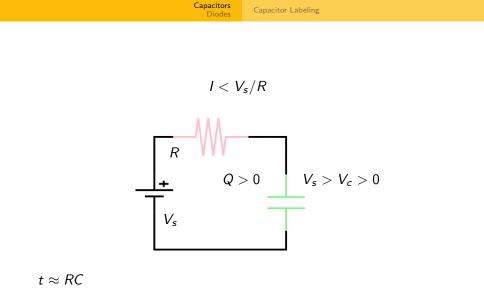
I = 0


t = 0, switch **open**

・ロト ・四ト ・ヨト ・ヨト

E

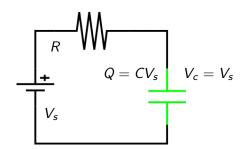
Capacitors Diodes Capacitor Labeling


 $I = V_s/R$

t = 0, switch closed

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

E



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

E

I = 0

t >> RC

・ロト ・四ト ・ヨト ・ヨト

E

• Some capacitors are unpolarized (like resistors);

<ロト <回ト < 注ト < 注ト -

1

• Some capacitors are unpolarized (like resistors); i.e. they can be placed either way in a circuit.

イロト イヨト イヨト

Э

SQC

- Some capacitors are unpolarized (like resistors); i.e. they can be placed either way in a circuit.
- Other types, (such as "electrolytics"), must be placed in a particular direction

イロト イヨト イヨト

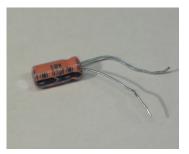
Э

SQA

- Some capacitors are unpolarized (like resistors); i.e. they can be placed either way in a circuit.
- Other types, (such as "electrolytics"), must be placed in a particular direction

(indicated by a "+" sign at one end.)

イロト イヨト イヨト


- Some capacitors are unpolarized (like resistors); i.e. they can be placed either way in a circuit.
- Other types, (such as "electrolytics"), must be placed in a particular direction

(indicated by a "+" sign at one end.)

• Big capacitors ($\gtrsim 1 \mu F$) are usually electrolytic.

イロト 人間ト イヨト イヨト

• Small electrolytic capacitor

E

Capacitors Diodes

• Big electrolytic capacitor

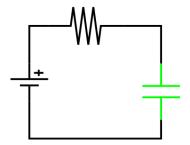
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

E

• Big electrolytic capacitor (top view)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Э

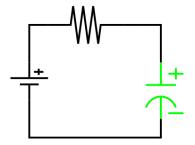


• Big electrolytic capacitor label

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

Э

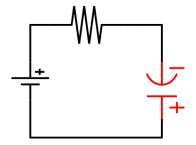
|--|



Non-polarized capacitor

・ロト ・部ト ・ヨト ・ヨト

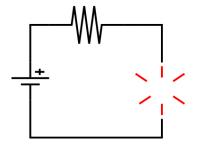
E



Polarized capacitor connected the right way

・ロト ・日ト ・日ト ・日ト

E



Polarized capacitor connected the wrong way

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

E

Diodes

Don't do this!!!

E

Capacitor Labeling

Capacitor Labeling

Terry Sturtevant Electronics Other Devices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

E

Capacitor Labeling

Unfortunately, capacitor labels are much less standardized than resistor labels.

イロト イヨト イヨト

3

SQR

Capacitor Labeling

Unfortunately, capacitor labels are much less standardized than resistor labels.

<ロト <回ト < 回ト < 回ト < 回ト -

Э

SQA

Capacitor Labeling

Unfortunately, capacitor labels are much less standardized than resistor labels.

This has the value, $10\mu F$, written on it.

イロト イヨト イヨト

DQ P

< □ > < ⊡ > < ⊡ > < ⊡ > < ⊡ > < ⊡

This one indicates 68 pF.

<ロト < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

÷.

This one indicates 68 pF. (The p to the right means the decimal is to the right and it's in picoFarads.)

・ロト ・四ト ・ヨト ・ヨト

Э

DQ P

◆□ → < @ → < E → < E → E</p>

This one indicates 0.68 nF, (or 680 pF).

< ロ > < 部 > < き > < き > <</p>

E

This one indicates 0.68 nF, (or 680 pF). (The *n* to the left means the decimal is to the left and it's in nanoFarads.)

イロト イポト イヨト イヨト

Э

DQ P

◆□ → < @ → < E → < E → E</p>

This one indicates 1.0 nF.

・ロト ・回ト ・ヨト ・ヨト

E

This one indicates 1.0 nF. (The *n* in the middle means the decimal is in the middle and it's in nanoFarads.)

<ロト <回ト < 回ト < 回ト < 回ト -

Э

SQA

This one indicates 10 nF.

<ロト < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

÷.

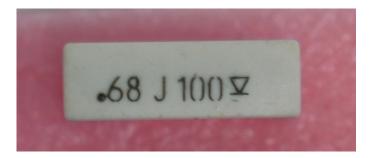
This one indicates 10 nF. (The *n* to the right means the decimal is to the right and it's in nanoFarads.)

Э

SQA

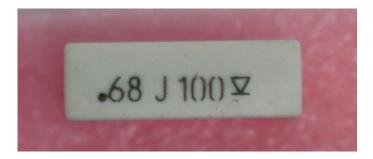
▲□ → ▲圖 → ▲ 圖 → ▲ 圖 →

æ



This is a $0.01\mu F$ capacitor. The "K" indicates a 10% tolerance.

・ロト ・回ト ・ヨト ・ヨト


Э

ヘロト 人間 と 人 ヨ と 人 ヨ と

E

Capacitors Diodes Capacitor Labeling

This is a $0.68\mu F$ capacitor. The "J" indicates a 5% tolerance.

<ロト <回ト < 回ト < 回ト -

Э

DQ P

◆□ → < @ → < E → < E → E</p>

This one gives the value in picoFarads, with the 3 numbers handled as for resistors.

<ロト <回ト < 回ト < 回ト < 回ト -

Э

Sac

This one gives the value in picoFarads, with the 3 numbers handled as for resistors. 10×10^3 pF or 10nF.

イロト イヨト イヨト

Э

SQA

This one gives the value in picoFarads, with the 3 numbers handled as for resistors. 10×10^3 pF or 10nF. The "J" indicates a 5% tolerance.

Э

DQ P

Diode

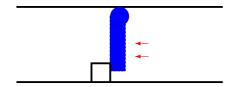
• an electronic device which passes current in one direction only

1

Diode

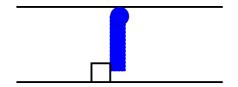
- an electronic device which passes current in one direction only
- $\bullet\,$ diode starts to allow current in the forward direction when the voltage reaches around 0.6V

3

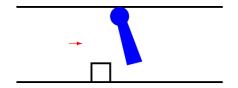

SQA

Diode

- an electronic device which passes current in one direction only
- $\bullet\,$ diode starts to allow current in the forward direction when the voltage reaches around 0.6V
- If the voltage gets high enough in the reverse direction, the diode will conduct; *"reverse breakdown voltage"*

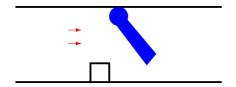

伺下 イヨト イヨト

Negative pressure; no flow possible

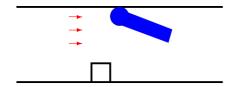

E

No pressure; resistance to flow is large

E

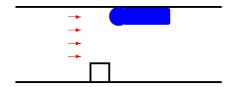

Small pressure; resistance to flow decreases

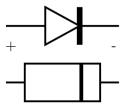
ヘロト 人間 と 人 ヨ と 人 ヨ と


1

Medium pressure; resistance to flow still decreasing

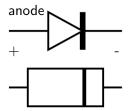
E


High pressure; resistance to flow small


ヘロト 人間 と 人 ヨ と 人 ヨ と

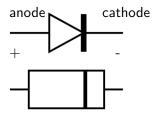
1

Very high pressure; resistance almost zero


1

Diode symbol and physical appearance

- 4 回 ト - 4 三 ト - 4 三 ト


Э

Diode symbol and physical appearance

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶

Э

Diode symbol and physical appearance

▲御▶ ▲臣▶ ▲臣▶

Э

Capacitors Diodes	LEDs

• Signal diodes (one type)

・ロト ・四ト ・ヨト ・ヨト

990

ŀ

Capacitors Diodes

LEDs

• Signal diodes (another type)

<ロト <回ト < 回ト < 回ト -

E

DQC

Capacitors Diodes

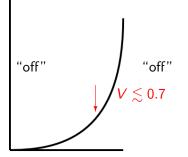
LEDs

• Power diodes (one type)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

E

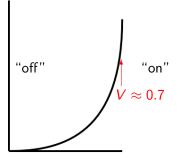
|--|



• Power diodes (another type)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

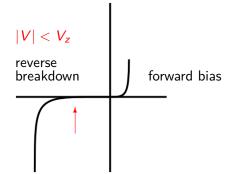
E



I small; changes slowly

・ロト ・四ト ・ヨト ・ヨト

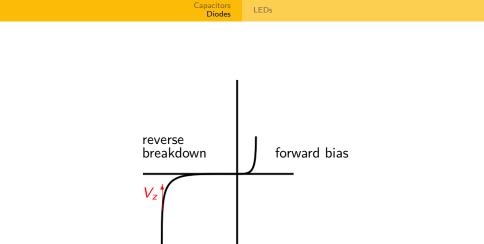
E



I large; almost independent of V

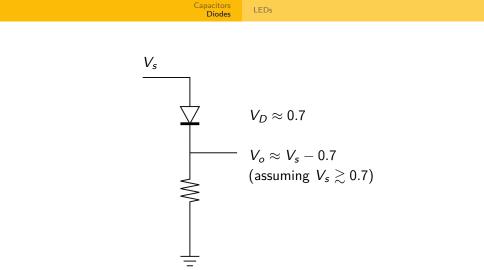
<ロト <部ト <きト <きト

E



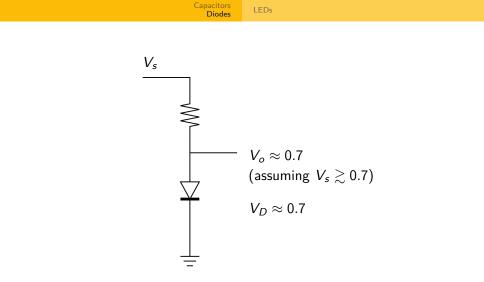
I small; changes slowly

<ロト <回ト < 回ト < 回ト < 回ト -


E

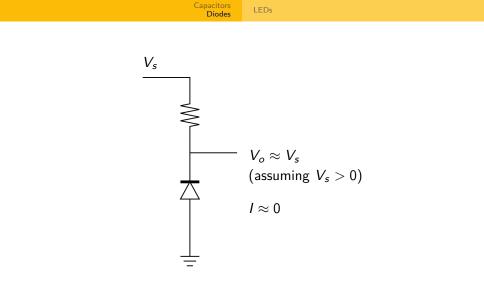
I large; almost independent of V

<ロト <回ト < 回ト < 回ト -


E

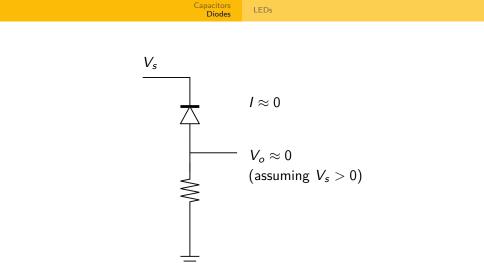
Forward biased diode in a voltage divider

<ロト <回ト < 回ト < 回ト < 回ト -


Э

Forward biased diode in a voltage divider

<ロト <回ト < 回ト < 回ト < 回ト -


E

Reverse biased diode in a voltage divider

<ロト <回ト < 回ト < 回ト -

E

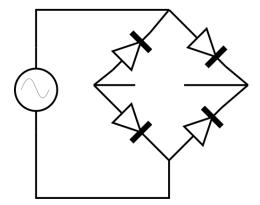
Reverse biased diode in a voltage divider

・ロト ・四ト ・ヨト ・ヨト

E

Capacitors Diodes	LEDs

One common use of diodes is for **rectification**, by putting diodes in a bridge circuit.

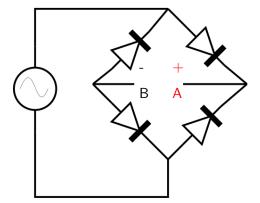

・ 同 ト ・ ヨ ト ・ ヨ ト

Э

SQA

Capacitors Diodes

LEDs

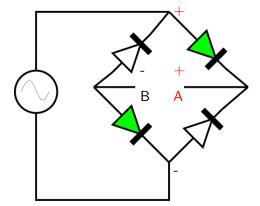

Here's the basic bridge.

イロト イヨト イモト イモト

E

Capacitors Diodes

LEDs

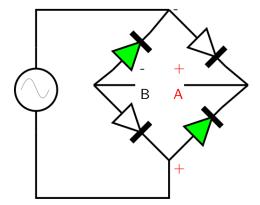

The output is taken between A and B.

・ロト ・四ト ・ヨト ・ヨト

E

pacitors Diodes

LEDs



For one half of the cycle, these two diodes shown in green are forward biased, so they're on. (The others are off.)

- 4 同 1 4 三 1 4 三 1

pacitors Diodes

LEDs

For the other half of the cycle, the other two diodes shown in green are forward biased, so they're on. (The others are off.)

5900

▲ 同 ▶ ▲ 三 ▶ ▲

э

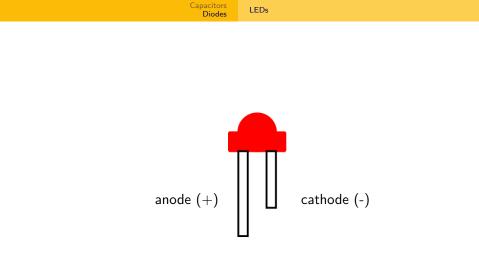
Capacitors Diodes	LEDs

For both parts of the cycle, A is positive relative to B.

◆□▶ ◆□▶ ◆三▶ ◆三▶

Э

SQR

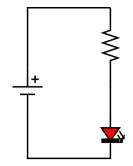

Capacitors Diodes	LEDs

LEDs are a special case; they light up above a certain voltage. The voltage depends on the colour.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

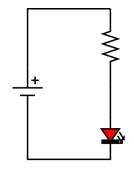
э

DQ P


• The LED lights up when current flows from the anode to the cathode..

<ロト <回ト < 回ト < 回ト -

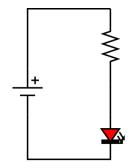
э


DQ P

Capacitors Diodes	LEDs

◆□ > ◆□ > ◆ □ > ● □ >

Capacitors Diodes	LEDs

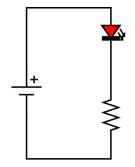


• You must use a resistor to limit the current.

▲日 > ▲ □ > ▲ □ > ▲ □ >

∃ <\0<</p>

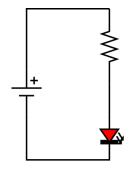
Capacitors Diodes	LEDs


- You must use a resistor to limit the current.
- Without a resistor, the LED will probably be destroyed.

A

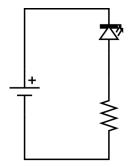
→ Ξ →

MQ (P


Capacitors Diodes	LEDs

• The resistor can go before or after the LED.

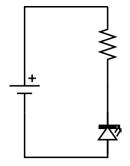
Э


Capacitors Diodes	LEDs

• The resistor can go before or after the LED.

Э

Capacitors Diodes	LEDs



• Reverse-biased, the LED won't light up.

・ロト ・日ト ・モト・モート

E

Capacitors Diodes	LEDs

• Reverse-biased, the LED won't light up.

・ロト ・四ト ・ヨト ・ヨト

E