Electronics
Kirchhoff’s Law Example

Terry Sturtevant

Wilfrid Laurier University

March 14, 2012
Analyzing the behaviour of DC circuits involving only DC (ie. unchanging in time) voltage sources and ohmic devices can be done using Kirchhoff’s Laws.
All of these calculations assume that the current through a device is proportional to the voltage across the device.
All of these calculations assume that the current through a device is proportional to the voltage across the device. A device for which this is true is considered “ohmic”.
All of these calculations assume that the current through a device is **proportional** to the voltage across the device. A device for which this is true is considered “ohmic”. For many devices the relationship may be far more complex, and so the equations relating voltages and currents in the circuit become non-linear and are much harder to solve.
These laws are

At any point in a circuit, the sum of the currents flowing toward the point is equal to the sum of the currents flowing away from the point; or, the algebraic sum of all the currents flowing toward a node is equal to zero.

\[\sum I = 0 \]
In any closed circuit, the algebraic sum of all the voltages around the loop is equal to zero; or, the sum of all voltage sources is equal to the sum of all IR drops\(^1\). (In this case “voltage sources” can be positive or negative.)

\[\sum V = \sum IR \]

\(^1\)The path around a loop is a series of voltage “steps”, in which, at the end of the loop, you must return to the same voltage you started with. There are only two kinds of voltages in the circuit. Those due to sources, such as batteries, and those due to sinks, which are resistors. By Ohm’s law, the voltage across a resistor is \(IR\).
The way that these laws are applied to analyze a circuit involves choosing **nodes** in the circuit for the first law and using **loops** in the circuit for the second and producing equations from each node and loop.
After the equations are created, determining the currents in the circuit is accomplished by solving the equations simultaneously. In this case, the system we must solve is of the form

\[AX = B \]

where \(A \) is the coefficient matrix and \(X \) is the vector of the currents. (Because of the two types of equations used, \(B \) is a vector of voltages and zeros.)
If a solution exists, it may be found by

\[X = A^{-1}B \]

where \(A^{-1} \) is the inverse of the coefficient matrix. (A solution will not exist if you have, for instance, erroneously connected two different voltage sources in parallel.)
So far no mention has been made of the *dimension* of the coefficient matrix. Clearly, to be invertible \(A \) must be square, however you will probably have many more equations than currents. This is because the equations are *not* all *linearly independent*. In other words, some of the equations are redundant, and will have to be eliminated for the system to be solvable.
Label all V’s and R’s.
Label all I’s to go with R’s and pick directions for I’s.
Label all I’s to go with R’s and pick directions for I’s.
Label all I’s to go with R’s and pick directions for I’s.
Label loops.
Label loops.
Label loops.
Label nodes.
Label nodes.
Making loop equations

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as positive if you come to the '-' terminal first.
3. If component is a resistor, count the IR as positive if you come to the resistor going against the current.
4. Repeat for all components until you are back at the node.
5. Set the sum of all of the contributions from 2 and 3 to zero.
Making loop equations

For each loop:

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as positive if you come to the '-' terminal first.
3. If component is a resistor, count the IR as positive if you come against the current.
4. Repeat for all components until you are back at the node.
5. Set the sum of all of the contributions from 2 and 3 to zero.
Making loop equations

For each loop:

1. Start at node, go around to first component.
Making loop equations

For each loop:

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as *positive* if you come to the ‘-’ terminal first.
Making loop equations

For each loop:

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as positive if you come to the ‘-’ terminal first.
3. If component is a resistor, count the IR as positive if you come to the resistor going against the current.
Making loop equations

For each loop:

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as positive if you come to the ‘-’ terminal first.
3. If component is a resistor, count the IR as positive if you come to the resistor going against the current.
4. Repeat for all components until you are back at the node.
Making loop equations

For each loop:

1. Start at node, go around to first component.
2. If component is a battery, count the voltage as *positive* if you come to the ‘-’ terminal first.
3. If component is a resistor, count the IR as *positive* if you come to the resistor going *against* the current.
4. Repeat for all components until you are back at the node.
5. Set the sum of all of the contributions from 2 and 3 to zero.
Here’s how the equation for Loop 1 is created.
Start at the lower right corner of this loop.
V_1 is the first thing we encounter.
V_1 is *positive* since we hit the negative terminal first.
R_1 is the next thing we encounter.
I_1R_1 is negative since the loop direction *matches* the current direction.
R_3 is next.
I_3R_3 is positive since the loop direction opposes the current direction.
Introduction
Step by step
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

R

L_1

Start here

Terry Sturtevant
Electronics Kirchhoff’s Law Example
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

$V_1 + V_1 = L_1$
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[+V_1 - I_1 R_1 \]
Creating voltage equations

\[+V_1 - I_1 R_1 + I_3 R_3 \]
\[+V_1 - I_1 R_1 + I_3 R_3 = 0 \]
Thus for the example above:
Thus for the example above:
Loop 1 (starting at Node 1)
Thus for the example above:

Loop 1 (starting at Node 1)

\[V_1 - I_1 R_1 + I_3 R_3 = 0 \]
Thus for the example above:
Loop 1 (starting at Node 1)

\[V_1 - I_1 R_1 + I_3 R_3 = 0 \]

Loop 2 (starting at Node 2)

\[V_2 - I_2 R_2 - I_3 R_3 = 0 \]
Thus for the example above:

Loop 1 (starting at Node 1)

\[V_1 - I_1R_1 + I_3R_3 = 0 \]

Loop 2 (starting at Node 2)

\[V_2 - I_2R_2 - I_3R_3 = 0 \]

Loop 3 (starting at Node 1)

\[V_1 - I_1R_1 + V_2 - I_2R_2 = 0 \]
Making node equations

For each node:
1. Currents coming into the node are positive, others are negative.
2. Set the sum of all of the contributions from 1 to zero.
Making node equations

For each node:

1. Currents coming into node are positive, others are negative.
2. Set the sum of all of the contributions from 1 to zero.
Making node equations

For each node:

1. Currents coming into node are positive, others are negative.
Making node equations

For each node:

1. Currents coming into node are positive, others are negative.
2. Set the sum of all of the contributions from 1 to zero.
Here’s how the equation for Node 1 is created.
Here is Node 1.
I_1 and I_3 go into Node 1.
I_2 comes out of Node 1.
Introduction

Step by step

Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[I_1 + I_3 = I_2 \]
$I_1 + I_3 - I_2 = 0$
Thus for the example above:
Thus for the example above:

Node 1

\[I_2 - I_3 - I_1 = 0 \]
Thus for the example above:

Node 1

\[I_2 - I_3 - I_1 = 0 \]

Node 2

\[I_1 + I_3 - I_2 = 0 \]
Set up a system of equations.
Set up a system of equations. Thus for the example above:
Set up a system of equations. Thus for the example above:

\[
\text{Loop 1 : } -I_1 R_1 + I_3 R_3 = -V_1 \\
\text{Loop 2 : } -I_2 R_2 - I_3 R_3 = -V_2 \\
\text{Loop 3 : } -I_1 R_1 - I_2 R_2 = -V_1 - V_2 \\
\text{Node 1 : } -I_1 + I_2 - I_3 = 0 \\
\text{Node 2 : } +I_1 - I_2 + I_3 = 0
\]
Create matrices.
Create matrices.
Thus for the example above:

\[
\begin{bmatrix}
-\mathbf{R}_1 & 0 & + \mathbf{R}_3 \\
0 & -\mathbf{R}_2 & -\mathbf{R}_3 \\
-\mathbf{R}_1 & -\mathbf{R}_2 & 0
\end{bmatrix}
\begin{bmatrix}
\mathbf{I}_1 \\
\mathbf{I}_2 \\
\mathbf{I}_3
\end{bmatrix}
= \begin{bmatrix}
-\mathbf{V}_1 \\
-\mathbf{V}_2 \\
-\mathbf{V}_1 \\
-\mathbf{V}_2 \\
0 \\
0
\end{bmatrix}
\]
Create matrices.
Thus for the example above:
We can rewrite the above system in matrix form as
Create matrices.
Thus for the example above:
We can rewrite the above system in matrix form as

$$
\begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}
\begin{pmatrix}
I_1 \\
I_2 \\
I_3
\end{pmatrix}
=
\begin{pmatrix}
-V_1 \\
-V_2 \\
-V_1 - V_2 \\
0 \\
0
\end{pmatrix}
$$
So clearly if we let

\[
A = \begin{bmatrix}
-RI_1 & 0 & RI_3 \\
0 & -RI_2 & -RI_3 \\
-1 & -1 & -1 \\
\end{bmatrix}
\]

\[
X = \begin{bmatrix}
I_1 \\
I_2 \\
I_3 \\
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
-V_1 & -V_2 & 0 \\
-V_1 & V_2 & 0 \\
\end{bmatrix}
\]
So clearly if we let

\[
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}
\]
So clearly if we let

\[
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
I_1 \\
I_2 \\
I_3
\end{pmatrix}
\]
Introduction

Step by step

Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

So clearly if we let

\[
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
\end{pmatrix}
\]

\[
X = \begin{pmatrix}
l_1 \\
l_2 \\
l_3 \\
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
-V_1 \\
-V_2 \\
-V_1 - V_2 \\
0 \\
0 \\
\end{pmatrix}
\]
Then
Then

\[AX = B \]
Reduce coefficient matrix to square, since it will not be invertible otherwise.
<table>
<thead>
<tr>
<th>Step by step</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Creating voltage equations</td>
<td></td>
</tr>
<tr>
<td>Creating current equations</td>
<td></td>
</tr>
<tr>
<td>Creating the matrix</td>
<td></td>
</tr>
<tr>
<td>Reducing the matrix to square</td>
<td></td>
</tr>
<tr>
<td>Solving the system</td>
<td></td>
</tr>
</tbody>
</table>

Reduce coefficient matrix to square, since it will not be invertible otherwise. Be sure to adjust the solution vector accordingly.
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
\end{pmatrix}

Here’s the matrix
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}
\]

Notice row 1

Terry Sturtevant
Electronics Kirchhoff's Law Example
Introduction
Step by step
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

$$A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1
\end{pmatrix}$$

Notice row 1 + row 2
Introduction
Step by step
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[
A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
\end{pmatrix}
\]

Notice row 1 +row 2 equal row 3, so we can get rid of row 3
Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[A = \begin{pmatrix} -R_1 & 0 & +R_3 \\ 0 & -R_2 & -R_3 \\ -R_1 & -R_2 & 0 \\ -1 & +1 & -1 \\ +1 & -1 & +1 \end{pmatrix} \]

Also, row 4
Introduction

Step by step

Creating voltage equations
Creating current equations
Creating the matrix
Reducing the matrix to square
Solving the system

\[A = \begin{pmatrix}
-R_1 & 0 & +R_3 \\
0 & -R_2 & -R_3 \\
-R_1 & -R_2 & 0 \\
-1 & +1 & -1 \\
+1 & -1 & +1 \\
\end{pmatrix} \]

Also, row 4 = -row 5, so get rid of row 5
So we are left with

\[A = \begin{pmatrix} -R_1 & 0 & +R_3 \\ 0 & -R_2 & -R_3 \\ -1 & +1 & -1 \end{pmatrix} \]
So we are left with

\[A = \begin{pmatrix} -R_1 & 0 & +R_3 \\ 0 & -R_2 & -R_3 \\ -1 & +1 & -1 \end{pmatrix} \]

and

\[B = \begin{pmatrix} -V_1 \\ -V_2 \\ 0 \end{pmatrix} \]

after adjustment.
Now

\[X = A^{-1}B \]
Now

\[X = A^{-1}B \]

which gives
Now

\[X = A^{-1} B \]

which gives

\[X = \frac{1}{R_2 R_1 + R_2 R_3 + R_1 R_3} \begin{pmatrix} R_3 V_1 + R_3 V_2 + R_2 V_1 \\ R_3 V_1 + R_1 V_2 + R_3 V_2 \\ R_1 V_2 - R_2 V_1 \end{pmatrix} \]
Now

\[X = \mathbf{A}^{-1} \mathbf{B} \]

which gives

\[X = \frac{1}{R_2 R_1 + R_2 R_3 + R_1 R_3} \begin{pmatrix}
R_3 V_1 + R_3 V_2 + R_2 V_1 \\
R_3 V_1 + R_1 V_2 + R_3 V_2 \\
R_1 V_2 - R_2 V_1
\end{pmatrix} \]

Notice that, depending on the voltages involved, some of the currents could be negative. In this case, it simply means that the actual current goes in the opposite direction from what you had chosen.