Electronics Internal resistance of a voltage source

Terry Sturtevant

Wilfrid Laurier University

June 13, 2014

Any device which produces a voltage output has a limit to the current it can provide.

Any device which produces a voltage output has a limit to the current it can provide.

Any device which produces a voltage output has a limit to the current it can provide.

This includes

batteries

Any device which produces a voltage output has a limit to the current it can provide.

- batteries
- power supplies

Any device which produces a voltage output has a limit to the current it can provide.

- batteries
- power supplies
- function generators

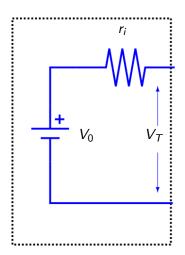
Any device which produces a voltage output has a limit to the current it can provide.

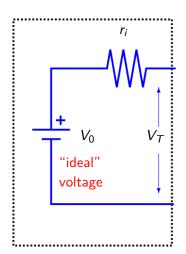
- batteries
- power supplies
- function generators
- amplifiers

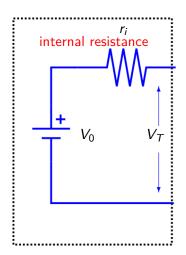
Any device which produces a voltage output has a limit to the current it can provide.

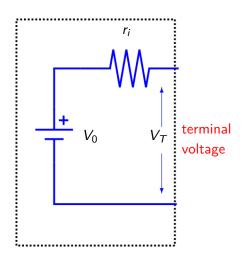
- batteries
- power supplies
- function generators
- amplifiers
- logic gates

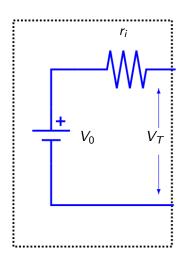
Any device which produces a voltage output has a limit to the current it can provide.


- batteries
- power supplies
- function generators
- amplifiers
- logic gates and so on


Any device which produces a voltage output has a limit to the current it can provide.

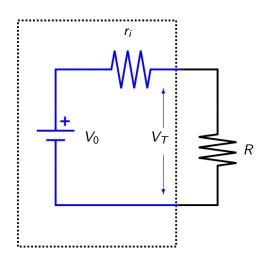

This includes


- batteries
- power supplies
- function generators
- amplifiers
- logic gates and so on

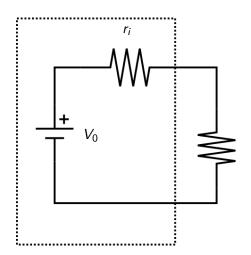

This can be represented as a resistance in series with the *ideal* voltage output of the device.

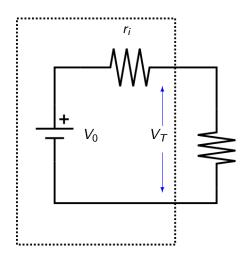
The potential difference between the terminals of a battery, V_T , decreases as the current supplied by the battery increases.

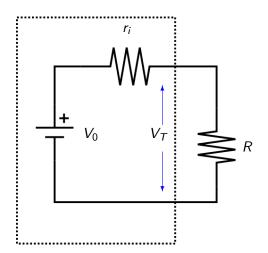
The potential difference between the terminals of a battery, V_T , decreases as the current supplied by the battery increases.

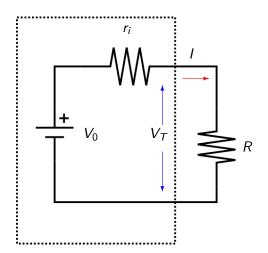

This is due to the potential drop which appears across the battery's **internal resistance** r_i .

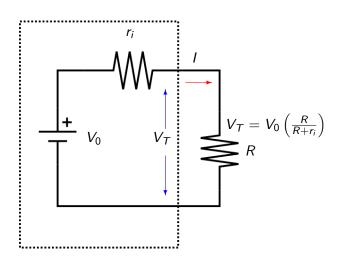
The potential difference between the terminals of a battery, V_T , decreases as the current supplied by the battery increases.


This is due to the potential drop which appears across the battery's **internal resistance** r_i .


Thus the maximum potential difference is attained only with *zero* output current.


We can see the effect of this by watching how the measured voltage changes if we put a resistance across the terminals of the device.




Notice that what we've done is to create a voltage divider with r_i and R.

$$V_T = V_0 \left(\frac{R}{R + r_i} \right)$$

$$V_T = V_0 \left(\frac{R}{R + r_i}\right)$$
$$\frac{V_T}{V_0} = \left(\frac{R}{R + r_i}\right)$$

$$V_T = V_0 \left(\frac{R}{R + r_i} \right)$$
$$\frac{V_T}{V_0} = \left(\frac{R}{R + r_i} \right)$$
$$\frac{V_0}{V_T} = \left(\frac{R + r_i}{R} \right)$$

$$V_T = V_0 \left(\frac{R}{R + r_i}\right)$$

$$\frac{V_T}{V_0} = \left(\frac{R}{R + r_i}\right)$$

$$\frac{V_0}{V_T} = \left(\frac{R + r_i}{R}\right)$$

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

$$V_T = V_0 \left(\frac{R}{R + r_i}\right)$$

$$\frac{V_T}{V_0} = \left(\frac{R}{R + r_i}\right)$$

$$\frac{V_0}{V_T} = \left(\frac{R + r_i}{R}\right)$$

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

$$\frac{V_0}{V_T} - 1 = \frac{r_i}{R}$$

$$V_{T} = V_{0} \left(\frac{R}{R + r_{i}}\right)$$

$$\frac{V_{T}}{V_{0}} = \left(\frac{R}{R + r_{i}}\right)$$

$$\frac{V_{0}}{V_{T}} = \left(\frac{R + r_{i}}{R}\right)$$

$$\frac{V_{0}}{V_{T}} = 1 + \frac{r_{i}}{R}$$

$$\frac{V_{0}}{V_{T}} - 1 = \frac{r_{i}}{R}$$

$$r_{i} = \left(\frac{V_{0}}{V_{T}} - 1\right)R$$

So if we can measure the voltage with no load; (i.e. essentially V_0), and then the voltage V_T with some resistance R, then we can determine r_i .

So if we can measure the voltage with no load; (i.e. essentially V_0), and then the voltage V_T with some resistance R, then we can determine r_i .

$$r_i = \left(\frac{V_0}{V_T} - 1\right) R$$

So if we can measure the voltage with no load; (i.e. essentially V_0), and then the voltage V_T with some resistance R, then we can determine r_i .

$$r_i = \left(\frac{V_0}{V_T} - 1\right) R$$

Note that the bigger the drop with load, the bigger r_i is, which makes sense.

So if we can measure the voltage with no load; (i.e. essentially V_0), and then the voltage V_T with some resistance R, then we can determine r_i .

$$r_i = \left(\frac{V_0}{V_T} - 1\right) R$$

Note that the bigger the drop with load, the bigger r_i is, which makes sense.

Question: If R is chosen to equal r_i , what will be the value of V_T ?

To graph this, it makes sense to linearize the equation:

To graph this, it makes sense to linearize the equation:

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

To graph this, it makes sense to linearize the equation:

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

Dividing both sides by V_0 gives

To graph this, it makes sense to linearize the equation:

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

Dividing both sides by V_0 gives

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0 R}$$

To graph this, it makes sense to linearize the equation:

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

Dividing both sides by V_0 gives

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0 R}$$

or

To graph this, it makes sense to linearize the equation:

$$\frac{V_0}{V_T} = 1 + \frac{r_i}{R}$$

Dividing both sides by V_0 gives

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0 R}$$

or

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line with a slope of

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line with a slope of $\frac{r_i}{V_O}$

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line with a slope of $\frac{r_i}{V_0}$ and a y-intercept of

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line with a slope of $\frac{r_i}{V_0}$ and a *y*-intercept of $\frac{1}{V_0}$.

$$\frac{1}{V_T} = \frac{1}{V_0} + \frac{r_i}{V_0} \frac{1}{R}$$

If we plot $\frac{1}{V_T}$ versus $\frac{1}{R}$ then we will get a straight line with a slope of $\frac{r_i}{V_0}$ and a *y*-intercept of $\frac{1}{V_0}$. We can get r_i by dividing the slope by the *y*-intercept.

Here's the setup:

Here's the setup:

Here are the data collected for a new 9 volt battery.

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27

Terminal voltage V_T
(V)
9.27
9.27
9.27

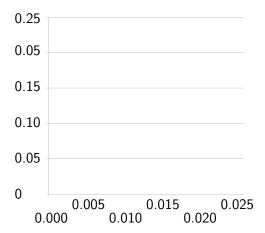
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
<u>:</u>	:
6800	9.24

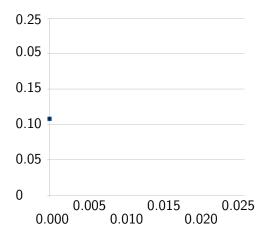
·	
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
:	:
6800	9.24
3300	9.22

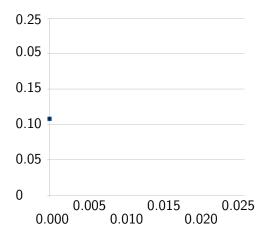
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
:	:
6800	9.24
3300	9.22
2200	9.20

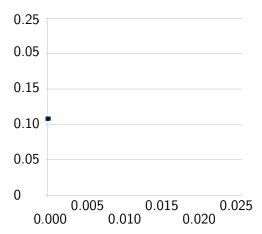
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
:	:
6800	9.24
3300	9.22
2200	9.20
1000	9.17

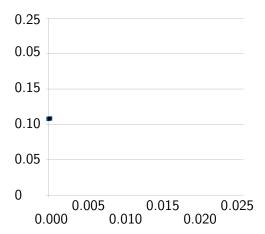
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
i :	<u>:</u>
6800	9.24
3300	9.22
2200	9.20
1000	9.17
680	9.14

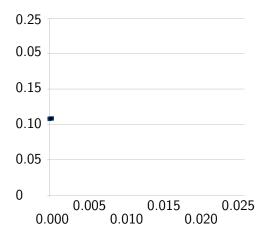

5	
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
i :	i :
6800	9.24
3300	9.22
2200	9.20
1000	9.17
680	9.14
330	9.08

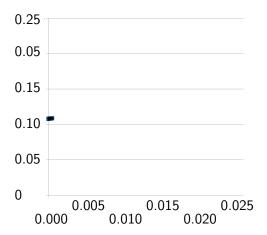

External resistance R	Tarminal valtage V-
	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
:	:
6800	9.24
3300	9.22
2200	9.20
1000	9.17
680	9.14
330	9.08
220	9.01

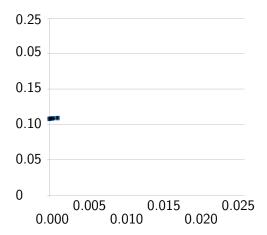

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	9.27
1000000	9.27
680000	9.27
<u>:</u>	:
6800	9.24
3300	9.22
2200	9.20
1000	9.17
680	9.14
330	9.08
220	9.01
100	8.80

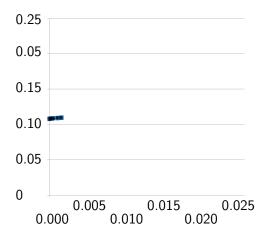

External resistance R	Terminal voltage V_T
(Ω)	(V)
(32)	(V)
∞	9.27
1000000	9.27
680000	9.27
:	:
6800	9.24
3300	9.22
2200	9.20
1000	9.17
680	9.14
330	9.08
220	9.01
100	8.80
47	8.40

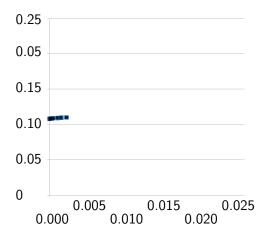

The graph of $\frac{1}{V_T}$ versus $\frac{1}{R}$ looks like this:

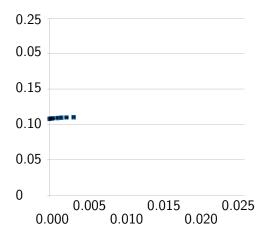


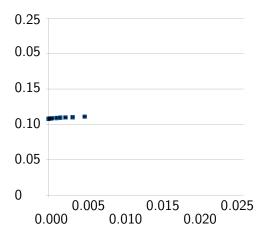


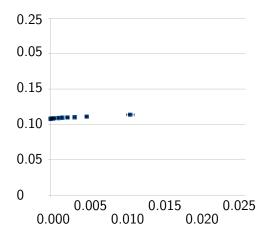


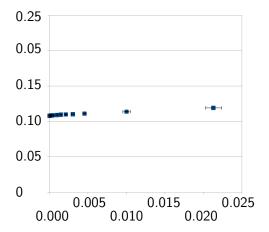


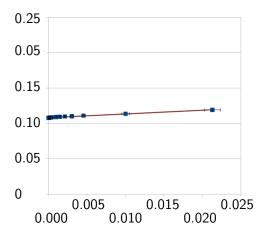












$$V_0 = 9.246 \pm 0.006 V$$

$$V_0 = 9.246 \pm 0.006 V$$

$$I_{max}=1.89\pm0.05A$$

$$V_0 = 9.246 \pm 0.006 V$$

$$I_{max}=1.89\pm0.05A$$

$$r_i = 4.8 \pm 0.1\Omega$$

Here are the data collected for a *used* 9 volt battery.

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11

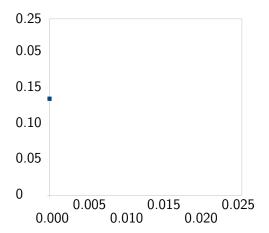
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01

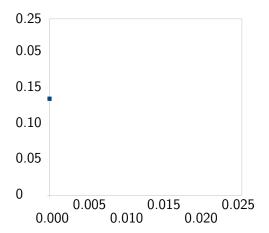
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93

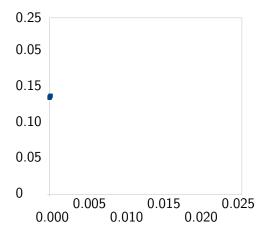
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71

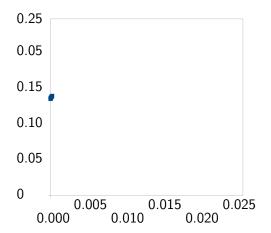
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71
680	6.56

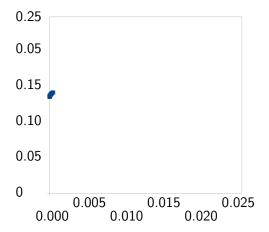

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71
680	6.56
330	6.10

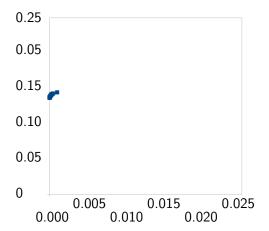

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71
680	6.56
330	6.10
220	5.72

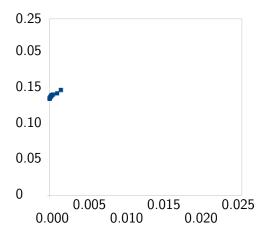

E	T
External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71
680	6.56
330	6.10
220	5.72
100	4.71

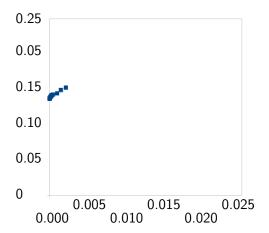

External resistance R	Terminal voltage V_T
(Ω)	(V)
∞	7.32
1000000	7.32
680000	7.32
:	:
6800	7.11
3300	7.01
2200	6.93
1000	6.71
680	6.56
330	6.10
220	5.72
100	4.71
47	3.55

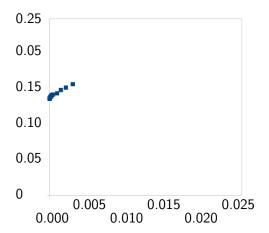

The graph of $\frac{1}{V_T}$ versus $\frac{1}{R}$ looks like this:

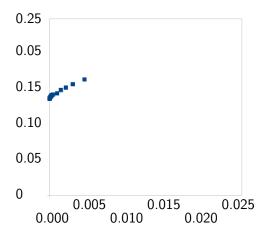


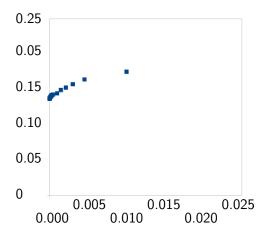


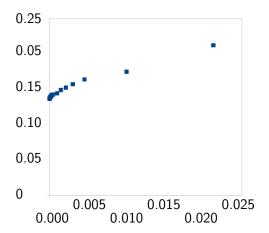


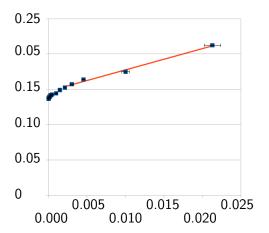












The steeper slope of this graph compared to the last one indicates that the internal resistance is much higher; in other words, the output voltage changes much more as current increases compared to the new battery.

$$V_0 = 6.78 \pm 0.08 V$$

$$V_0 = 6.78 \pm 0.08 V$$

$$I_{max} = 0.33 \pm 0.02A$$

$$V_0 = 6.78 \pm 0.08 V$$

$$I_{max} = 0.33 \pm 0.02A$$

$$r_i = 20 \pm 1\Omega$$

$$V_0 = 6.78 \pm 0.08 V$$

$$I_{max} = 0.33 \pm 0.02A$$

$$r_i = 20 \pm 1\Omega$$

(Using all of the data points gives slightly different results, but ones that are still much different than those for the new battery.)

Parameter	New battery	Old battery
$V_0(V)$	9.246 ± 0.006	6.78 ± 0.08
$I_{max}(A)$	1.89 ± 0.05	0.33 ± 0.02
$r_i(\Omega)$	4.8 ± 0.1	20 ± 1

Parameter	New battery	Old battery
$V_0(V)$	9.246 ± 0.006	6.78 ± 0.08
$I_{max}(A)$	1.89 ± 0.05	0.33 ± 0.02
$r_i(\Omega)$	4.8 ± 0.1	20 ± 1

Even though the nominal battery voltage is only 27% lower, the internal resistance is 5 times as high, and the maximum current available is only 1/6 of what it is for the new battery.