Electronics
Resistive Sensors and Bridge Circuits

Terry Sturtevant

Wilfrid Laurier University

September 27, 2012
Switches in voltage dividers

- One of the simplest forms of voltage divider is where one of the elements is a *switch*.
- A switch can be thought of as a resistor which can have a value of either zero or infinity.
- Following is an illustration of a voltage divider where one element is a switch.
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

\[V_{out} = V_{in} \left(\frac{R_2}{R_1 + R_2} \right) \]

True if \(I_{out} \equiv 0 \)

Terry Sturtevant
Electronics Resistive Sensors and Bridge Circuits
Switches in voltage dividers

Resistive sensors in voltage dividers

Wheatstone bridges

\[R_1 = \infty \Rightarrow I = 0 \]

\[V_2 = V_{out} = 0 \]
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

\[R_1 = \infty \Rightarrow I = 0 \]

\[V_2 = V_{out} = 0 \]
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

\[R_1 = 0 \Rightarrow V_1 = 0 \]

\[V_2 = V_{out} = V_{in} \]
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

\[\begin{align*}
R_1 &= 0 \Rightarrow V_1 = 0 \\
V_2 &= V_{out} = V_{in}
\end{align*} \]
So if one of the elements is a *switch*, the output varies between 0 and V_{in}.

If either resistor in a voltage divider is *variable*, then a range of output voltages is possible.
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

\[V_{out} = V_{in} \left(\frac{R_2}{R_1 + R_2} \right) \]

True if \(I_{out} \equiv 0 \)
A **resistive sensor** is a resistor which changes according to some physical change in its environment. Some examples would be:

- Potentiometer; the resistance varies with *physical movement*
- Photoresistor; the resistance varies with *light*
- Thermistor; the resistance varies with *heat*
- Strain gauge (or gage); the resistance varies with *stress* or *compression*
- Force-dependent resistor; the resistance varies with *applied pressure*
Here’s an example of how a strain gauge works.
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

Resistive sensors

\[R = \rho \frac{L}{A} \]

Terry Sturtevant
Electronics Resistive Sensors and Bridge Circuits
Switches in voltage dividers
Resistive sensors in voltage dividers
Wheatstone bridges

Resistive sensors

Resistance (Ω)

Temperature ($^\circ$C)

(High temperature; R_{min})

(Low temperature; R_{max})

This is the resistance/temperature curve for a thermistor.
If we want to put this variable resistor in a voltage divider, then we need to choose the other resistor.

To make the output vary over as large a range as possible as the variable resistor goes from R_{min} to R_{max}, it turns out we want to choose the other resistor, R so that

$$R = \sqrt{R_{\text{min}} \times R_{\text{max}}}$$
A common type of circuit is a **Wheatstone bridge**.

It is really a pair of voltage dividers using a common voltage source.

It’s usually operated with the output voltage at or close to zero.
This is a Wheatstone bridge.
Here it’s redrawn to show the two voltage dividers.
Here's one voltage divider.
Here’s the other voltage divider.
Often a Wheatstone bridge is used with one resistor variable, such as a resistive sensor.

Knowing the other resistors allows the variable one to be easily determined.

The circuit is very sensitive to small changes in the variable resistor.
The variable resistor could be in any of the four positions; this is one example.
Balancing a Wheatstone Bridge

- When the bridge is “balanced”, $V_o = 0$ or $V_A = V_B$.
- (This will happen when $\frac{R_1}{R_2} = \frac{R_v}{R_4}$.)
- For our diagram $R_1 \rightarrow R_2$ is the reference branch, and $R_v \rightarrow R_4$ is the evaluation branch.
- If R_v increases, V_B will decrease, and vice versa.
- For optimum performance, all resistors should be of the same order of magnitude.
- If using a resistive sensor, use a meter to measure resistance of sensor to get a correct order of magnitude.
If resistors are chosen to be equal, except for R_v, then the output voltage will vary with changes in R_v.

$$R_v = R + \Delta R$$
Specifically,

\[V_A = V \frac{R}{2R} = \frac{V}{2} \]

\[V_B = V \frac{R}{2R+\Delta R} = V \frac{R+\Delta R/2-\Delta R/2}{2R+\Delta R} = \frac{V}{2} - V \frac{\Delta R/2}{2R+\Delta R} \approx \frac{V}{2} - V \frac{\Delta R/2}{2R} \]

If no current flows between A and B then

\[V_A - V_B \approx V \frac{\Delta R}{4R} \]

which can be rearranged to give

\[\Delta R \approx \frac{(V_A - V_B)}{V} 4R \]

So we can determine \(\Delta R \).

(This approximation is true as long as \(\Delta R << R \))