Resistor／Capacitor Decoding

MIL 規格 抵抗・コンデンサコード一覧表
お客様各位
このたびは，Rel ex 信頼性工学資料をダウンロードいただきまして，誠にありがとうございます。Rel ex ソフトウエアでは，信頼性，保全性及び安全性解析に必要な下記ツールをご用意しております。Rel ex デモ CD及び資料ご希望の方は，弊社ホームページ又 は下記よりお申し込みくさい。本資料が皆様方の業務にお役に立てば幸いです。

```
2003年4月1日
    テックサポートマネジメン㤢限会社
    〒 2130012
    神奈川県川崎市高津区坂戶 3-2-1 かながわサイエンスパーク西棟 413D
    電話:044 829-2061 FAX 044 829-2062
    http://muw.tsm.ksp.or.jp
    Relex ソフトウエア代理店
```

1）信頼度予測（MBF計算）
＊サポートしている信頼度予測モデル＊
－M L－HDBK 217 （PARTS STRESS／PARTS COUNT）
－TELCORD A／BELLCORE SR－332

－CNET93

－RDF2000
－HRD5
－Rel ex PRI SM

- Rel ex 299B Parts Stress（中国信頼度予測モデル）
- Rel ex 299B Parts Count（中国信頼度予測モデル）
－NSWC 98／LE1
－\cdot NPRD95

2 ）信頼性ブロック図（RBD）
3）Rel ex OpSi m
4 ）Rel ex Wei bull（ワイブル）
5）Rel ex Narkov
6）FMEA／FMECA
7）FAULT TREE／EVENT TREE
$8) ~$ 保全性予測（MTR）
9）ライフサイクルコスト KCC）
10）Relex FRACAS

Resistor/Capacitor Decoding

The Relex Resistor/Capacitor Library file contains all resistor and capacitor types supported by MIL-HDBK-217. Military and commercial companies alike have adopted the part numbering conventions used. The decoding in the Relex Resistor/Capacitor Library file is described in the following section. This section describes the basic resistor and capacitor styles and types that are supported and reviews each of the prefixes associated with those part types. Due to the numerous variations in part numbers for these parts, the part numbers in the resistor/capacitor library have been decoded in a special way. The more detailed the part number, the more specific information that is retrieved from the Library file for those parts.
The Relex Resistor and Capacitor Library file can save thousands of hours of time by automatically providing you with the appropriate information. And, even though the Library file is very large, access times are a fraction of a second.
The following table describes the resistor and capacitor types included in the Relex Resistor/Capacitor Library file:

Resistor Style	Type	MIL-Spec	Description
Composition, Fixed	RC	MIL-R-11	Resistors, Fixed, Composition, Insulated
	RCR	MIL-R-39008	Resistors, Fixed, Composition, Insulated, Established Reliability
Film, Fixed	RD	MIL-R-11804	Resistors, Fixed, Film, Power Type
	RN	MIL-R-10509	Resistors, Fixed, Film, High Stability
	RL	MIL-R-22684	Resistors, Fixed, Film, Insulated
	RLR	MIL-R-39017	Resistors, Fixed, Film, Insulated, Established Reliability
	RNR	MIL-R-55182	Resistors, Fixed, Film, Established Reliability
	RM	MIL-R-55342	
	RNC		
	RNN		
Special (Networks)	RZ	MIL-R-83401	Resistor, Network, Fixed, Film
Special (Thermistors)	RTH	MIL-T-23648	Thermistor (Thermally Sensitive Resistor), Insulated
Wirewound, Fixed	RW	MIL-R-26	Resistors, Fixed, Wirewound, Power Type
	RB	MIL-R-93	Resistors, Fixed, Wirewound, Accurate
	RE	MIL-R-18546	Resistors, Fixed, Wirewound, Power Type, Chassis Mounted
	RBR	MIL-R-39005	Resistors, Fixed, Wirewound, Accurate, Established Reliability

Resistor Style	Type	MIL-Spec	Description
Non-wirewound, Variable	RV	MIL-R-94	Resistors, Variable, Composition
	RWR	MIL-R-39007	Resistors, Fixed, Wirewound, Power Type, Established Reliability
	RJ	MIL-R-22097	Resistors, Variable, Non-wirewound, Lead Screw Actuated
	RVC	MIL-R-23285	Resistors, Variable, Film
	RQ	MIL-R-39023	Resistors, Variable, Non-wirewound, Precision
Wirewound, Variable	RJR	MIL-R-39035	Resistors, Variable, Cermet or Carbon Film, Lead Screw Actuated, Established Reliability
	RP	MIL-R-22	Resistors, Variable, Wirewound, Low Operating Temperature
	RA	MIL-R-19	Resistors, Variable, Wirewound, Power Type
	RR	MIL-R-12934	Resistors, Variable, Wirewound, Precision
	RT	MIL-R-27208	Resistors, Variable, Wirewound, Lead Screw Actuated
	RK	MIL-R-39002	Resistors, Variable, Wirewound, Semi-Precision
	RTR	MIL-R-39015	Resistors, Variable, Wirewound, Lead Screw Actuated, Established Reliability

Capacitor	Type	MIL-Spec	Description
Style			
Paper/Plastic Film	CP	MIL-C-25	Capacitors, Fixed, Paper
	CZ	MIL-C-11693	Capacitors, Fixed, Paper, Metallized Paper, Metallized Plastic, RFI Feed-Thru, Established Reliability
	CA	MIL-C-12889	Capacitors, Fixed, paper, RFI Bypass
	CPV	MIL-C-14157	Capacitors, Fixed, Paper-Plastic, Established Reliability
	CH	MIL-C-18312	Capacitors, Metallized Paper, Paper-Plastic, Plastic
	CQ	MIL-C-19978	Capacitors, Fixed, Plastic or Paper-Plastic
	CQR	MIL-C-19978	Capacitors, Fixed, Plastic or Paper-Plastic, Established Reliability
	CHR	MIL-C-39022	Capacitors, Fixed, Metallized, Paper-Plastic Film or Plastic Film Dielectric, Established Reliability
Mica	CFR	MIL-C-55514	Capacitors, Plastic, Metallized Plastic, Established Reliability
	CRH	MIL-C-83421	Capacitors, Super-Metallized Plastic, Established Reliability
	CM	MIL-C-5	Capacitors, Fixed, Mica
	CB	MIL-C-10950	Capacitors, Fixed, Mica, Button Style
	CMR	MIL-C-39001	Capacitors, Fixed, Mica, Established Reliability
	CY	MIL-C-11272	Capacitors, Glass
	CYR	MIL-C-23269	Capacitors, Fixed, Glass, Established Reliability
	CC	MIL-C-20	Capacitors, Fixed, Ceramic, Temperature Compensating
	CCR	MIL-C-20	Capacitors, Fixed, Ceramic, Temperature Compensating
	CK	MIL-C-11015	Capacitors, Fixed, Ceramic, General Purpose
	CKR	MIL-C-39014	Capacitors, Fixed, Ceramic, General Purpose, Established Reliability
	CDR	MIL-C-55681	Capacitors, Fixed, Ceramic, General Purpose, Established Reliability, Chip
	CE	MIL-C-62	Capacitors, Fixed, Electrolytic, DC, aluminum, Dry Electrolyte, Polarized
	CL	MIL-C-3965	Capacitors, Fixed, Electrolytic, Non-solid Electrolyte, Tantalum
	CSR	MIL-C-39003	Capacitors, Fixed, Electrolytic, Tantalum, Solid Electrolyte, Established Reliability
	CLR	MIL-C-39006	Capacitors, Fixed, Electrolytic, Tantalum, Non-solid Electrolyte, Established Reliability
	CU	MIL-C-39018	Capacitors, Fixed, Electrolytic, Aluminum Oxide

Capacitor Style	Type	MIL-Spec	Description
	CUR	MIL-C-39018	Capacitors, Fixed, Electrolytic, Aluminum Oxide
	CWR	MIL-C-55365	
Variable	CRL	MIL-C-83500	
	CV	MIL-C-81	Capacitors, Variable, Ceramic
	CT	MIL-C-92	Capacitors, Air, Trimmer
	PC	MIL-C-14409	Capacitors, Variable, Piston Type, Tubular Trimmer
Vacuum/Gas	CG	MIL-C-23183	Capacitors, Vacuum or Gas, Fixed and Variable

The remainder of this document provides specific details regarding how the part numbers are decoding when Relex searches the Resistor/Capacitor Library file.

RESISTORS -- Example Part Numbers
Composition, Fixed
RC MIL-R-11

RC06	GF	153	K
\mid	\mid	\mid	\mid

RESISTANCE TOLERANCE:

$$
G=+/-2 \%
$$

$\mathrm{J}=+\mathrm{C}-5 \%$
$\mathrm{K}=+/-10 \%$
RESISTANCE:
See "Notes regarding Three-Digit Resistance Figures"
CHARACTERISTIC:
| G \& F represent maximum ambient-temperature characteristic | and resistance-temperature characteristics as per extensive
| tables
STYLE:
RC plus 2-digit number referencing Size and Power Rating (i.e., RC05, RC06, RC07, RC20, RC32, RC42)

RCR MIL-R-39008

RCR plus 2-digit number referencing Size and Power Rating (i.e., RCR05, RCR07, RCR20, RCR32, RCR42)

Film, Fixed
RD MIL-R-11804

STYLE:
RD plus 2-digit number referencing Size and Power Rating (i.e., RD31, RD33, RD36, RD37, RD39, RD60, RD65, RD70)

Film, Fixed (Continued)

RN MIL-R-10509

RN60	D	1003	F
\mid	\mid	\mid	I

See "Notes regarding Four-Digit Resistance Figures"
| CHARACTERISTIC:
| B, C, D, E, F, or G (based on extensive table)
STYLE:
RN plus 2-digit number referencing Size
(i.e., RN60)

Film, Fixed (cont.)
RL MIL-R-22684

| S = Solderable terminals
STYLE:
RL plus 2-digit number referencing Size and Power Rating (i.e., RL42)

RLR MIL-R-39017

STYLE:
RLR plus 2-digit number referencing Size and Power Rating (i.e., RLR05, RLR07, RLR20, RLR32)

Film, Fixed (cont.)
RNR MIL-R-55182

See "Notes regarding Four-Digit Resistance Figures"
| CHARACTERISTIC:
| $\mathrm{C}=+/-50 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage (hermetically sealed)
$\mathrm{H}=+/-50 \mathrm{ppm} /$ degrees C ; 125 degrees C max ambient temp at rated wattage
(nonhermetically sealed)
$\mathrm{E}=+/-25 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage
(hermetically sealed)
$\mathrm{J}=+/-25 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage
(nonhermetically sealed)
| $\mathrm{K}=+/-100 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage
STYLE:
RNR plus 2-digit number referencing Size and Configuration (i.e., RNR50, RNR55, RNR60, RNR65, RNR70, RNR75)

RNC

See "Notes regarding Four-Digit Resistance Figures"
| CHARACTERISTIC:
| $\mathrm{C}=+/-50 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage (hermetically sealed)
$\mathrm{H}=+/-50 \mathrm{ppm} /$ degrees C ; 125 degrees C max ambient temp at rated wattage
(nonhermetically sealed)
$\mathrm{E}=+/-25 \mathrm{ppm} /$ degrees C ; 125 degrees C max ambient temp at rated wattage
(hermetically sealed)
$\mathrm{J}=+/-25 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage
(nonhermetically sealed)
$\mathrm{K}=+/-100 \mathrm{ppm} /$ degrees $\mathrm{C} ; 125$ degrees C max ambient temp at rated wattage
STYLE:
RNC plus 2-digit number referencing Size and Configuration (i.e., RNC50, RNC55, RNC60, RNC65, RNC70, RNC75)

Film, Fixed (cont.)
RNR90 \& RNC90

STYLE:

RNC or RNR plus 2-digit number referencing Size and Configuration (90)

RM MIL-R-55342
RM0505K

RM plus 4-digit number referencing Size and Power Rating
(i.e. RM0502, RM0505, RM1005, RM1505, RM0705, RM2208, RM1206, RM2010, RM2512, RM1010)

Film, Fixed (cont.)
RM MIL-R-55342 (cont.)
In addition, RM Resistors are also decoded as follows:

Special
RZ MIL-R-83401 (Resistor Networks)

Special (cont.)
RTH MIL-T-23648 (Thermistors)

RTH plus 2-digit number referencing physical configuration (i.e., RTH06)

Wirewound, Fixed
RW MIL-R-26

RW33	V	100	T
\mid	\mid	\mid	\mid
\mid	\mid	\mid	CENTER TAPPED:

T = Center-tapped
| \mid RESISTANCE:
| | See "Notes regarding Three-Digit Resistance Figures"
| CHARACTERISTIC (Max Operating Temp):
| V = 350 degrees max oper temp; min IR of 100 omega
| $\mathrm{N}=+/-400 \mathrm{ppm} /$ degrees $\mathrm{C}(\mathrm{R}<20$ omega) or $+/-260 \mathrm{ppm} /$ degrees $\mathrm{C}(\mathrm{R}>$ or $=$ to 20 omega)
STYLE:
RW plus 2-digit number referencing Size and Power Rating
(i.e., RW29, RW31, RW33, RW35, RW37, RW38, RW47, RW56)

RB MIL-R-93

STYLE:
RB plus 2-digit number referencing Size and Power Rating
(i.e., RB16, RB17, RB18, RB19, RB52, RB53, RB54, RB55, RB56, RB08, RB57,

RB58, RB59, RB70, RB71, RB72, RB73)

Wirewound, Fixed (cont.)
RE MIL-R-18546

RE77	G	1001
\mid	\mid	\mid
\mid	\mid	RESISTANCE:

| | See "Notes regarding Four-Digit Resistance Figures"
| CHARACTERISTIC:
| G = Inductively Wound
| $\mathrm{N}=$ Non-Inductively Wound
STYLE:
RE plus 2-digit number referencing Size and Power Rating (i.e., RE77 or RE80)

RBR MIL-R-39005

RBR52	L	50 R 50	A	M
\mid	\mid	\mid	\mid	\mid
\mid	\mid	\mid	\mid	LIFE FAILURE RATE:
\mid	\mid	\mid	\mid	$\mathrm{M}=1.0 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{P}=0.1 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{R}=0.01 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{S}=0.001 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	INITIAL RESISTANCE TOLERANCE:	

$$
\begin{aligned}
& \mathrm{T}=+/-.01 \% \\
& \mathrm{~A}=+/-.05 \% \\
& \mathrm{~B}=+/-.1 \% \\
& \mathrm{~F}=+/-1.0 \%
\end{aligned}
$$

| | RESISTANCE:
| See "Notes regarding Five-Digit Resistance Figures"
| TERMINAL AND delta R PERFORMANCE REQUIREMENT:
| $\mathrm{L}=$ solderable (tightened delta R)
| U = weldable (tightened delta R)
STYLE:
RBR plus 2-digit number referencing Size and Rating (i.e., RBR52, RBR53, RBR54, RBR55, RBR56, RBR57, RBR71, RBR75)

Wirewound, Fixed (cont.)
RWR MIL-R-39007

RWR74 S	1R00	F	M	
\mid	\mid	\mid	\mid	FAILURE RATE:
\mid	\mid	\mid	\mid	$\mathrm{M}=1.0 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{P}=0.1 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{R}=0.01 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	\mid	$\mathrm{S}=0.001 \% / 1,000 \mathrm{hr}$
\mid	\mid	\mid	RESISTANCE TOLERANCE:	
\mid	\mid	\mid	$\mathrm{B}=+/-0.1 \%$	
\mid	\mid	\mid	$\mathrm{D}=+/-0.5 \%$	
\mid	\mid	\mid	$\mathrm{F}=+/-1.0 \%$	
\mid	RESISTANCE:			

| See "Notes regarding Four-Digit Resistance Figures"
| TERMINAL \& WINDING:
| S = Solderable
| $\quad \mathrm{W}=$ Weldable
| $\mathrm{N}=$ Solderable, noninductively wound
STYLE:
RWR plus 2-digit number referencing Size/Wattage/Construction (i.e., RWR74, RWR78, RWR80, RWR81, RWR82, RWR84, RWR89)

RER MIL-R-39009

RER plus 2-digit number referencing Size and Power Rating (i.e., RER40, RER45, RER50, RER55, RER60, RER65, RER70, RER75)

Non-wirewound, Variable
RV MIL-R-94
RV4
| $\mathrm{T}=$ Locking bushing, shaft and panel seal
| S = Standard bushing, shaft and panel seal
STYLE:
RV plus 1-digit number referencing Size and Power Rating
(i.e., RV4 or RV6)

Non-wirewound, Variable (cont.)
RJ MIL-R-22097
RJ12
C

Non-wirewound, Variable (cont.)
RVC MIL-R-23285

STYLE:
RVC plus 1-digit number referencing Size and Power Rating
(i.e., RVC6)

Non-wirewound, Variable (cont.)
RJR MIL-R-39035
RJR24 C

RJR plus 2-digit number referencing Physical Size
(i.e., RJR12, RJR24, RJR26, RJR28, RJR32, RJR50)

RQ090	A	A	1	3	A	A	101
\|	\|	\|	\|	\|	\|	\|	\|
\|	\|	\|	\|	\|	\|	\|	RESIS
\|	\|	\|	\|	\|	\|	\|	See "N
\|	\|	\|	\|	\|	\|	\|	Three
\|	\|	\|		\|	\|	\|	Figure
\|	,	\|		\|	\|		T-SMO
\|	\|	\|	I	\|	\|		initial;
\|	\|	\|		\|	\|		initial;
\|	\|	\|	\|	\|	\|	$\mathrm{C}=$	initial;
\|	\|	\|	\|	\|	\|		. 25 initia
\|	\|	\|	\|	\|	\|	$\mathrm{E}=$	1 initial
\|	\|	\|	\|	\|		ION	NFOR
\|	\|		\|	\|		$\mathrm{A}=$	initial;
\|	\|		I	\|			initial;
\|	-		\|	\|			5 initial
\|	\|	\|	\|	\|		D	0 initial
\|	\|	\|	\|	\|			5 initial
\|			\|	\|		$\mathrm{F}=$	25 initia
\|	\|	\|	\|		AR	TERI	
\|	\|	\|	\|			$\times 10$	ev; 0.5
\|	\|	\|	\|			$10^{\wedge} 6$; 2 hr
\|	\|	\|	\|			$10^{\wedge} 6$; 10 hr
\|	\|	\|	\|			10^	\%; 50 hr
\|	\|	\|		UR	IST		
\|	\|	\|					
\|	\|	\|					
\|	\|	\|			25\%		
\|	\|		LE				
\|	\|						
\|	\|						
\|	\|						
\|	\|						
\|	\|						
\|	\|						
\|	RESISTANCE TEMP. CHARACTERISTIC: (5% max resistance change; 70 degrees C (max ambient temp at rated load), 125 degrees C (max ambient temp with zero load); and taps located at center of resistance element A = not applicable B = applicable						
\|							
\|							
\|							
\|							
\|							
\|							

STYLE:
RQ plus 3-digit number referencing Physical Size
(i.e., RQ090, RQ100, RQ110, RQ150, RQ160, RQ200, RQ210, RQ300)

Wirewound, Variable
RP MIL-R-22
RP05

RP plus 2-digit number referencing Size and Power Rating (i.e., RP05, RP06, RP10, RP15, RP20, RP25, RP30)

Wirewound, Variable (cont.)
RA MIL-R-19

RA plus 2-digit number referencing Size and Power Rating (i.e., RA20 or RA30)

Wirewound, Variable (cont.)
RR MIL-R-12934

RR0900 B 3 A 9 G 101						
\|	\|					
\|	\|			RESISTANCE:		
\|	\|	\| See "Notes regarding Three-Digit				
\|	\|		Resistance Figures"			
\|	\|		FUNCT. CONFORMITY/RESISTANCE TOLERANCE CHAR.			
\|	$\|\|\|\mid \mathrm{G}=+/-1.0 \% \mathrm{FCT} ;+/-3 \% \mathrm{RT}$					
\|	$\|\|\|\mid \mathrm{J}=+/-0.10 \% \mathrm{FCT} ;+/-3 \% \mathrm{RT}$					
\|	\|	L $=+/-0.025 \% \mathrm{FCT} ;+/-3 \% \mathrm{RT}$				
\|	$\|\|\mid \mathrm{S}=+/-1.0 \% \mathrm{FCT} ;+/-1 \% \mathrm{RT}$					
\|	\|	V $=+/-0.10 \% \mathrm{FCT} ;+/-1 \% \mathrm{RT}$				
\|	\|	Y = +/-0.025\% FCT; +/-1\% RT				
\|	\|	ROTATIONAL LIFE CHARACTERISTIC:				
\|	\|	$9=500,000$ single turn; 100,000 ten turn				
\|	RESISTANCE TEMPERATURE CHARACTERISTIC					
\|	$\mathrm{A}=+/-.003$					
,	$\mathrm{C}=+/-.010$					
\|	CLASS \& CENTER TAP:					
\|	85 degrees C maximum ambient temp at rated wattage,					
\|	150 degrees C maximum ambient operating temperature					
\|	3 = Not applicable					
\|	5 = Applicable					

| FUNCTION \& SHAFT LENGTH:
$\mathrm{A}=3 / 8$ (servo mounted), $3 / 4$ (bushing mounted)
$B=1 / 2$ (servo mounted, $7 / 8$ bushing mounted)
$\mathrm{C}=5 / 8$ (servo mounted), 1 (bushing mounted)
$\mathrm{D}=3 / 4$ (servo mounted), 1-1/8 (bushing mounted)
$\mathrm{E}=7 / 8$ (servo mounted), 1-1/4 (bushing mounted)
| $\mathrm{F}=1$ (servo mounted), 1-3/8 (bushing mounted)
STYLE:
RR plus 4-digit number referencing Physical Size
(i.e., RR0900, RR1100, RR2000, RR3000, RR1000, RR1300, RR1400,

RR2100, RR3100, RR3200, RR3300, RR3400, RR3500, RR3700, RR3900,
RR4000, RR4100)

Wirewound, Variable (cont.)
RT MIL-R-27208

STYLE:
RT plus 2-digit number referencing Physical Size
(i.e., RT26)

RK MIL-R-39002
RK09 SA
SHE

Wirewound, Variable (cont.)
RTR MIL-R-39015

STYLE:
RTR plus 2-digit number referencing Physical Size
(i.e., RTR12, RTR22, RTR24)

NOTES REGARDING RESISTANCE:

Notes regarding Three-Digit Resistance Figures

A three-digit number identifies the resistance value expressed in ohms; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. When resistance values less than 10 ohms are required, the letter "R" is substituted for one of the significant digits to represent the decimal point. When the letter "R" is used, succeeding digits of the group represent significant figures as shown in the following example:

$$
2 \mathrm{R} 7=2.7 \mathrm{ohms}
$$

Notes regarding Four-Digit Resistance Figures

A four-digit number identifies the resistance value expressed in ohms; the first three digits represent significant figures and the last digit specifies the number of zeros to follow. When resistance values less than 100 ohms are required, the letter "R" is substituted for one of the significant digits to represent the decimal point. When the letter " R " is used, succeeding digits of the group represent significant figures as shown in the following example:

$$
10 \mathrm{R} 0=10.0 \mathrm{ohms}
$$

Notes regarding Five-Digit Resistance Figures

A five-digit number identifies the resistance value expressed in ohms; the first four digits represent significant figures and the last digit specifies the number of zeros to follow. When resistance values less than 1000 ohms are required, the letter " R " is substituted for one of the significant digits to represent the decimal point. When the letter " R " is used, succeeding digits of the group represent significant figures as shown in the following example:

$$
10 \mathrm{R} 00=10.00 \text { ohms }
$$

Notes regarding Six-Digit Resistance Figures

A six-digit number identifies the resistance value expressed in ohms; the first five digits represent significant figures and the last digit specifies the number of zeros to follow. When resistance values less than 10000 ohms are required, the letter " R " is substituted for one of the significant digits to represent the decimal point. When the letter " R " is used, succeeding digits of the group represent significant figures as shown in the following example:
$100 \mathrm{R} 00=100.00 \mathrm{ohms}$

Capacitor - Example Part Numbers
Paper/Plastic Film
CP MIL-C-25

CHARACTERISTIC:

A, B, E, F, or K (based on extensive table)
CIRCUIT:
$1,2,3,4,5$, or 6 (based on table and drawings)
| TERMINAL:
$\mathrm{A}=$ Axial wire leads
$\mathrm{B}=$ Solder lug (non-removable)
$\mathrm{C}=$ Threaded stud and nuts
$\mathrm{D}=$ Pillar insulator for use at altitudes up to 7,500 ft, furnished with threaded stud and nuts
$\mathrm{E}=$ Pillar insulator for use at altitudes up to $50,000 \mathrm{ft}$
F = hooked-wire lead
STYLE:
CP plus 2 digit number representing Shape and Size (i.e., CP07, CP10)

Paper/Plastic Film (cont.)
CZ MIL-C-11693
CZ23
B

NON-ER STYLE:
CZ plus 2 digit number representing Shape and Size
(i.e., CZ23)

Paper/Plastic Film (cont.)
CA MIL-C-12889

STYLE:
CA plus 2 digit number representing Shape and Size
(i.e., CA32)

Paper/Plastic Film (cont.)
CPV MIL-C-14157

STYLE:
CPV plus 2 digit number representing Shape and Size
(i.e., CPV09)

Paper/Plastic Film (cont.)
CH MIL-C-18312

Paper/Plastic Film (cont.)
CHR MIL-C-39022

STYLE:
CHR plus 2 digit number representing Shape
(i.e., CHR09, CHR49)

CHARACTERISTIC:

E, P, K, M, T, Q, S, or L (based on extensive table)
CIRCUIT:
1 or 3 (based on table and drawings)
TERMINAL:
A = Axial wire lead
$\mathrm{B}=$ Solder lug (non-removable)
$\mathrm{C}=$ Threaded stud and nuts
$\mathrm{D}=$ Pillar insulator for use at altitudes up to $7,500 \mathrm{ft}$
$\mathrm{E}=$ Pillar insulator for use at altitudes up to $50,000 \mathrm{ft}$
$\mathrm{F}=$ radial wire lead
$\mathrm{G}=$ Radial pin

NON-ER STYLE:

CQ plus 2 digit number representing Shape and Size
(i.e., CQ07, CQ09, CQ13, CQ29, CQ32, CQ33)

CHARACTERISTIC

E, P, K, M, T, Q, S, or L (based on extensive table)

CIRCUIT

1 or 3 (based on table and drawings)
| TERMINAL

A = Axial wire lead	
	$\mathrm{B}=$ Solder lug (non-removable)
	$\mathrm{C}=$ Threaded stud and nuts
ER STYLE Pillar insulator for use at altitudes up to $7,500 \mathrm{ft}$	
	$\mathrm{E}=$ Pillar insulator for use at altitudes up to $50,000 \mathrm{ft}$
$\mathrm{F}=$ radial wire lead	
$\mathrm{G}=$ Radial pin	

CQR plus 2 digit number representing Shape and Size (i.e., CQR07, CQR09, CQR12, CQR13, CQR29, CQR32, CQR33)

Paper/Plastic Film (cont.)
CFR MIL-C-55514
CFR02 A M

CFR plus 2 digit number
(i.e., CRF02, CFR04, CFR05, CRF06, CFR12)

Paper/Plastic Film (cont.)
CRH MIL-C-83421
CRH01
|
|
STYLE:
CRH plus 2 digit number representing various characteristics (i.e., CRH01, CRH02, CRH03, CRH04, CRH05, CRH06, CRH07, CRH08, CRH09, CRH00)

Mica
CM MIL-C-5

CM plus 2 digit number referencing Shape and Dimensions (i.e., CM15, CM20, CM30, CM35, CM45, CM50)

Mica (cont.)
CB MIL-C-10950

| $\quad \mathrm{P}=$ Single L R = Double L
STYLE:
CB plus 2 digit number referencing Shape, Dimensions, and Operating
Temperature Range (i.e., CB50, CB55, CB56, CB57, CB60, CB61, CB62, CB65, CB66, CB67)

Mica (cont.)
CMR MIL-C-39001

CMR plus 2 digit number representing Shape and Dimensions
(i.e., CMR03, CMR04, CMR05, CMR06, CMR07, CMR08)

Glass
CY MIL-C-11272

CY plus 2 digit number representing Shape and Dimensions (i.e., CY10, CY15, CY20, CY30, CY12, CY13, CY16, CY17, CY21, CY22, CY31, CY32, CY06, CY07, CY08)

Glass (cont.)
CYR MIL-C-23269

STYLE:

CYR plus 2 digit number representing Shape and Dimensions
(i.e., CYR10, CYR15, CYR20, CYR30, CYR13, CYR17, CYR22, CYR32, CYR41, CYR42, CYR43, CYR51, CYR52, CYR53)

Ceramic

CC MIL-C-20

CC plus 2-digit number representing Shape and Dimension (i.e., CC75, CC76, CC77, CC78, CC79, CC81, CC82, CC83, CC05, CC09, CC06, CC07, CC08, CC15, CC16, CC17, CC18, CC54, CC55, CC56, CC57, CC13, CC14, CC90)

Ceramic (cont.)
CCR MIL-C-20
CCR75

CCR plus 2 digit number representing Shape and Dimension
(i.e., CCR75, CCR76, CCR77, CCR78, CCR79, CCR81, CCR82, CCR83, CCR05, CCR09, CCR06, CCR07, CCR08, CCR15, CCR16, CCR17, CCR18, CCR54, CCR55, CCR56, CCR57, CCR13, CCR14, CCR90)

Ceramic (cont.)
CK MIL-C-11015

CK60	BX	2 R 2	K
\mid	\mid	\mid	\mid
		\mid	CAPACITANCE TOLERANCE:

K = +/- 10%
$M=+/-20 \%$
CAPACITANCE:
See "Notes regarding Capacitance Figures"
RATED TEMPERATURE:
$\mathrm{AX}=-55$ degrees to +85 degrees C
$B X=-55$ degrees to +125 degrees C
$C X=-55$ degrees to +150 degrees C
STYLE:
CK plus 2 digit number representing Shape and Dimensions (i.e., CK60, CK62, CK70, CK80)

CKR MIL-C-39014

CKR05 CW	100	K	M
\mid	\mid	\mid	FAILURE RATE LEVEL:
\mid	\mid	$\mathrm{M}=1.0 \% / 1,000 \mathrm{hr}$	
\mid	\mid	$\mathrm{P}=0.1 \% / 1,000 \mathrm{hr}$	
\mid	\mid	$\mathrm{R}=0.01 \% / 1,000 \mathrm{hr}$	
\mid	CAPACITANCE TOLERANCE:		
\mid	OPERATING TEMPERATURE RANGE AND VOLTAGE TEMPERATURE		

LIMITS:
| Two letters representing Operating Temp Range (1st) and
| Voltage Temperature Limits (2nd)
| First Letter $=\quad \mathrm{A}=$ Oper Temp -55 degrees to +85 degrees C
B = Oper Temp -55 degrees to +125 degrees C
$\mathrm{C}=$ Oper temp -55 degrees to +150 degrees C
Second Letter= W or X (based on detailed table)
STYLE:
CKR plus 2 digit number representing Shape
(i.e., CKR05, CKR06, CKR11, CKR12, CKR14, CKR15, CKR22, CKR23)

Ceramic (cont.)
CDR MIL-C-55681

STYLE:

CDR plus 2 digit number representing Dimensions
(i.e., CDR01, CDR02, CDR03, CDR04)

Electrolytic
CE MIL-C-62

CE plus 2 digit number representing Shape and Dimensions (i.e., CE13, CE71)

Electrolytic (cont.)
CL MIL-C-3965

CAPACITANCE

See "Notes regarding Capacitance Figures" VOLTAGE:

A $=3$ volts	$\mathrm{J}=50$ volts	$\mathrm{S}=270$ volts
$\mathrm{B}=6$ volts	$\mathrm{K}=60$ volts	$\mathrm{T}=360$ volts
$\mathrm{C}=8$ volts	$\mathrm{L}=75$ volts	$\mathrm{U}=450$ volts
$\mathrm{D}=10$ volts	$\mathrm{M}=90$ volts	$\mathrm{V}=540$ volts
$\mathrm{E}=15$ volts	$\mathrm{N}=100$ volts	$\mathrm{W}=630$ volts
$\mathrm{F}=20$ volts	$\mathrm{O}=250$ volts	$\mathrm{X}=300$ volts
$\mathrm{G}=25$ volts	$\mathrm{P}=125$ volts	$\mathrm{Y}=375$ volts
$\mathrm{H}=30$ volts	$\mathrm{Q}=150$ volts	$\mathrm{Z}=200$ volts
$\mathrm{I}=112$ volts	$\mathrm{R}=180$ volts	

CHARACTERISTIC:

$B=$ Rated temp range of -55 degrees to +85 degrees C
STYLE:
CL plus 2 digit number representing Design Features
(i.e., CL10)

Electrolytic (cont.)
CSR MIL-C-39003
CSR13 B (

CSR plus 2 digit number representing Design Features (i.e., CSR13, CSR91, CSR21)

Electrolytic (cont.)
CLR MIL-C-39006

CLR plus 2 digit number representing Shape
(i.e., CLR21, CLR25, CLR27, CLR35, CLR37, CLR79)

Electrolytic (cont.)
CU MIL-C-39018

CU plus 2 digit number referencing Shape, Dimensions, \& Insulation (i.e., CU12)
CUR13 C

CUR plus 2 digit number referencing Shape, Dimensions, \& Insulation (i.e., CUR13, CUR17, CUR19, CUR71, CUR91)

Electrolytic (cont.)
CWR MIL-C-55365
CWR02 B

CWR plus 2 digit number representing Design (i.e., CWR02, CWR03, CWR04, CWR06)

Variable
CV MIL-C-81

CV11	A	070
\mid	CAPACITANCE:	
\mid	See "Notes regarding Capacitance Figures"	
\mid	A B B , C, D, or E (based on extensive table outlining	
\mid	relative capacitance change limits with temperature)	

CV plus 2 digit number representing Shape and Dimensions (i.e., CV11, CV21, CV31)

CT MIL-C-92

CT06	F	004	J
\mid	\mid	\mid	\mid
\mid	\mid	\mid	ROTATIONAL LIFE:
\mid	\mid	\mid	$\mathrm{J}=250$ cycles
\mid	\mid	\mid	$\mathrm{M}=10,000$ cycles

CAPACITANCE:

See "Notes regarding Capacitance Figures"
| VOLTAGE:
| $\mathrm{A}=50$ volts
$B=100$ volts
C $=300$ volts
D $=350$ volts
$\mathrm{E}=500$ volts
$\mathrm{F}=600$ volts
$\mathrm{G}=700$ volts
STYLE:
CT plus 2 digit number representing Shaft Type and Length (i.e., CT06)

Variable (cont.)

```
PC MIL-C-14409
PC38 Q 1R8
| |
| CAPACITANCE:
| See "Notes regarding Capacitance Figures"
| CHARACTERISTIC:
|
| Operating temp range, Temperature coefficient, and
Capacitance drift)
STYLE:
PC plus 2 digit number representing Shape
(i.e., PC17, PC18, PC19, PC21, PC22, PC23, PC24, PC25, PC26,
PC30, PC32, PC38, PC39, PC40, PC42, PC43, PC48, PC52)
```

Vacuum/Gas
CG MIL-C-23183

CG plus 2 digit number referencing Shape of Case
(i.e., CG10, CG20, CG15, CG41, CG60, CG62, CG65, CG66, CG21, CG30,

CG31, CG32, CG40, CG42, CG43, CG44, CG63, CG64, CG67, CG50, CG51)

NOTES REGARDING CAPACITANCE

The nominal capacitance of fixed capacitors expressed in picofarads (pF) has a tolerance of (10 percent, and is identified by a three-digit number; the first two digits represent significant figures and the last digit specifies the number of zeros to follow. When nominal value is less than 10 pF , the letter " R " shall be used to indicate the decimal point and the succeeding digit(s) of the group shall represent significant figures(s). For example:

1 R 0 indicates 1.0 pF
R75 indicates 0.75 pF
0R5 indicates 0.5 pF
100 indicates 10 pF
For CE, CL, CLR, CM, and CMR Capacitors, the above information is true with the exception of units. For these Capacitors only, capacitance is expressed in microfarads (uF).
For CT Capacitors, a three-digit number identifies the nominal maximum capacitance value expressed in picofarads (pF). For values of 1 to 9 pF , inclusive, the first two digits shall be zeros, and for values of 10 uuF to 99 pF inclusive, the first digit shall be zero.

