Uncertainty Calculations - Subtraction Wilfrid Laurier University

Terry Sturtevant
Wilfrid Laurier University

May 9, 2013

Calculations with uncertainties

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.
Following is a discussion of subtraction.

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.
Following is a discussion of subtraction.
For the following examples, the values of $x=2 \pm 1$ and $y=32.0 \pm 0.2$ will be used.

Subtraction

Subtraction

Subtraction with uncertainties

Subtraction - Example

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$
since y can be as small as 31.8 and x can be as big as 3

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$
since y can be as small as 31.8 and x can be as big as 3
$\rightarrow z$ can be as big as $32.2-1=31.2$

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$
since y can be as small as 31.8 and x can be as big as 3
$\rightarrow z$ can be as big as $32.2-1=31.2$
since y can be as big as 32.2 and x can be as small as 1 and

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$
since y can be as small as 31.8 and x can be as big as 3
$\rightarrow z$ can be as big as $32.2-1=31.2$
since y can be as big as 32.2 and x can be as small as 1 and
- The nominal value of z is

Subtraction - Example

If we subtract these numbers,

- $z=(y=32.0 \pm 0.2)-(x=2 \pm 1)$
$\rightarrow z$ can be as small as $31.8-3=28.8$
since y can be as small as 31.8 and x can be as big as 3
$\rightarrow z$ can be as big as $32.2-1=31.2$
since y can be as big as 32.2 and x can be as small as 1 and
- The nominal value of z is

$$
z=32.0-2=30.0
$$

To summarize,

To summarize,
z can be as small as $31.8-3=28.8$

To summarize,

z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is

$$
z=32.0-2=30.0
$$

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is

$$
z=32.0-2=30.0
$$

- So we can say $z=30.0 \pm 1.2$

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is
$z=32.0-2=30.0$
- So we can say $z=30.0 \pm 1.2$
and we see that $\Delta z=1.2=1+0.2=\Delta x+\Delta y$

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is
$z=32.0-2=30.0$
- So we can say $z=30.0 \pm 1.2$
and we see that $\Delta z=1.2=1+0.2=\Delta x+\Delta y$
- So in general, $\Delta(y-x)=\Delta x+\Delta y$

To summarize,
z can be as small as $31.8-3=28.8$
z can be as big as $32.2-1=31.2$

- The nominal value of z is
$z=32.0-2=30.0$
- So we can say $z=30.0 \pm 1.2$
and we see that $\Delta z=1.2=1+0.2=\Delta x+\Delta y$
- So in general, $\Delta(y-x)=\Delta x+\Delta y$

When subtracting numbers, we add uncertainties.

Graphically,

Graphically,

- To subtract, we can reverse the direction of y.

Graphically,

- To subtract, we can reverse the direction of y.

Graphically,

Graphically,

- This is the nominal value of $x-y$.

Graphically,

- To find the minimum value of $x-y$, start with the nominal value of $x-y$.

Graphically,

- First we move y by a distance Δx.

Graphically,

- Then we need to move our left pointer by Δy.

Graphically,

- This is the minimum value of $x-y$.

Graphically,

- This is the minimum value of $x-y$.
- It has moved from the nominal value by $\Delta x+\Delta y$.

Graphically,

- To find the maximum value of $x-y$, start with the nominal value of $x-y$.

Graphically,

- First we move y by a distance Δx.

Graphically,

- Then we move our left pointer by a distance Δy.

Graphically,

- This is the maximum value of $x-y$.
- It has moved from the nominal value by a distance $\Delta x+\Delta y$.

Recap

Recap

(1) When subtracting numbers, we add the absolute uncertainties.

Recap

(1) When subtracting numbers, we add the absolute uncertainties. For example,

$$
(2 \pm 1)-(32.0 \pm 0.2)=(2-32.0) \pm(1+0.2)=-30.0 \pm 1.2
$$

Recap

(1) When subtracting numbers, we add the absolute uncertainties. For example,

$$
(2 \pm 1)-(32.0 \pm 0.2)=(2-32.0) \pm(1+0.2)=-30.0 \pm 1.2
$$

(2) Uncertainties in final results are usually expressed to one significant figure, so the above result becomes

$$
(2 \pm 1)-(32.0 \pm 0.2)=-30.0 \pm 1.2=-30 \pm 1
$$

