Uncertainty Calculations - Subtraction Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University

May 9, 2013

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

= nac

Subtraction

Calculations with uncertainties

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

Subtraction

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Subtraction

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of **subtraction**.

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of **subtraction**.

For the following examples, the values of $x = 2 \pm 1$ and $y = 32.0 \pm 0.2$ will be used.

Subtraction

Subtraction

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

Subtraction

Subtraction

Subtraction with uncertainties

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

Subtraction

Subtraction - Example

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

<ロト < 部ト < ヨト < ヨト

€ 990

Subtraction

Subtraction - Example

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

<ロ> <部> <部> < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2 > < 2

Sac

Subtraction

Subtraction - Example

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

 \rightarrow z can be as small as 31.8 - 3 = 28.8

<日> <部> <部> < 部> < 部> < 部> <</p>

DQ C

If we subtract these numbers,

- $z = (y = 32.0 \pm 0.2) (x = 2 \pm 1)$
 - \rightarrow z can be as small as 31.8 3 = 28.8

since y can be as small as 31.8 and x can be as big as 3

<ロト < 部ト < 注ト < 注ト = 注</p>

DQ C

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

 \rightarrow z can be as *small* as 31.8 - 3 = 28.8

since y can be as small as 31.8 and x can be as big as 3

 \rightarrow z can be as *big* as 32.2 - 1 = 31.2

・ロン ・四マ ・ヨン ・ヨー

JOC P

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

 \rightarrow z can be as *small* as 31.8 - 3 = 28.8

since y can be as *small* as 31.8 and x can be as *big* as 3

 \rightarrow z can be as *big* as 32.2 - 1 = 31.2

since y can be as *big* as 32.2 and x can be as *small* as 1 and

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

 \rightarrow z can be as small as 31.8 - 3 = 28.8

since y can be as *small* as 31.8 and x can be as *big* as 3

 \rightarrow z can be as *big* as 32.2 - 1 = 31.2

since y can be as *big* as 32.2 and x can be as *small* as 1 and • The *nominal* value of z is

If we subtract these numbers,

• $z = (y = 32.0 \pm 0.2) - (x = 2 \pm 1)$

 \rightarrow z can be as *small* as 31.8 - 3 = 28.8

since y can be as small as 31.8 and x can be as big as 3

 \rightarrow z can be as *big* as 32.2 - 1 = 31.2

since y can be as *big* as 32.2 and x can be as *small* as 1 and

• The *nominal* value of z is

z = 32.0 - 2 = 30.0

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

・ロト・4目ト・4目ト・4目ト・4日ト

```
z can be as small as 31.8 - 3 = 28.8
```

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ● ●

z can be as *small* as 31.8 - 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The *nominal* value of z is

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The nominal value of z is

z = 32.0 - 2 = 30.0

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The nominal value of z is

z = 32.0 - 2 = 30.0

• So we can say $z=30.0\pm1.2$

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The nominal value of z is

z = 32.0 - 2 = 30.0

• So we can say $z = 30.0 \pm 1.2$ and we see that $\Delta z = 1.2 = 1 + 0.2 = \Delta x + \Delta y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The nominal value of z is

z = 32.0 - 2 = 30.0

• So we can say $z = 30.0 \pm 1.2$ and we see that $\Delta z = 1.2 = 1 + 0.2 = \Delta x + \Delta y$

• So in general, $\Delta(y - x) = \Delta x + \Delta y$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

- *z* can be as *small* as 31.8 3 = 28.8*z* can be as *big* as 32.2 - 1 = 31.2
- The *nominal* value of z is

z = 32.0 - 2 = 30.0

- So we can say $z = 30.0 \pm 1.2$ and we see that $\Delta z = 1.2 = 1 + 0.2 = \Delta x + \Delta y$
- So in general, $\Delta (y x) = \Delta x + \Delta y$ When subtracting numbers, we add uncertainties.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

Subtraction

Graphically,

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

《日》 《圖》 《臣》 《臣》

Ξ

• To subtract, we can reverse the direction of y.

<ロ> <同> <同> < 同> < 同>

Э

• To subtract, we can reverse the direction of y.

<ロ> <同> <同> < 同> < 同>

Э

Subtraction

Graphically,

《日》《圖》《注》《注》

€ 990

Subtraction

Graphically,

• This is the nominal value of x - y.

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

Calculations with Uncertainties Recap Subtraction

Graphically,

• To find the minimum value of x - y, start with the nominal value of x - y.

Calculations with	Uncertainties	
	Recap	

Subtraction

Graphically,

• First we move y by a distance Δx .

<ロ> <同> <同> < 同> < 同> < 同>

3

Calculations with Uncertainties Recap Subtraction

Graphically,

• Then we need to move our left pointer by Δy .

< □ > < □ > < □ > < □ > < □ > .

Э

Subtraction

Graphically,

• This is the minimum value of x - y.

< □ > < □ > < □ > < □ > < □ > .

E ∽94@

Calculations with Uncertainties Recap Subtraction

Graphically,

- This is the minimum value of x y.
- It has moved from the nominal value by $\Delta x + \Delta y$.

Calculations with Uncertainties Recap Subtraction

Graphically,

• To find the maximum value of x - y, start with the nominal value of x - y.

Graphically,

• First we move y by a distance Δx .

< ロ > < 同 > < 臣 > < 臣 > -

Э

Calculations with Uncertainties Recap Subtraction

Graphically,

• Then we move our left pointer by a distance Δy .

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

《曰》 《圖》 《臣》 《臣》

 \equiv

Calculations with Uncertainties Recap Subtraction

Graphically,

- This is the maximum value of x y.
- It has moved from the nominal value by a distance $\Delta x + \Delta y$.

Recap

Terry Sturtevant Uncertainty Calculations - Subtraction Wilfrid Laurier University

Recap

(1) When subtracting numbers, we add the *absolute* uncertainties.

《曰》《聞》《臣》《臣》

E ∽94@

Recap

When subtracting numbers, we add the *absolute* uncertainties.
For example,

$$(2 \pm 1) - (32.0 \pm 0.2) = (2 - 32.0) \pm (1 + 0.2) = -30.0 \pm 1.2$$

《曰》《聞》《臣》《臣》

E ∽94@

Recap

When subtracting numbers, we add the *absolute* uncertainties.
For example,

 $(2 \pm 1) - (32.0 \pm 0.2) = (2 - 32.0) \pm (1 + 0.2) = -30.0 \pm 1.2$

② Uncertainties in final results are usually expressed to one significant figure, so the above result becomes

 $(2 \pm 1) - (32.0 \pm 0.2) = -30.0 \pm 1.2 = -30 \pm 1$