Uncertainty Calculations - Multiplication Wilfrid Laurier University

Terry Sturtevant
Wilfrid Laurier University

May 9, 2013

Calculations with uncertainties

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.
Following is a discussion of multiplication.

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.
Following is a discussion of multiplication.
For the following examples, the values of $x=2 \pm 1$ and $y=32.0 \pm 0.2$ will be used.

Multiplication by a constant

Multiplication by a constant

Multiplication by a constant with uncertainties

Multiplication by a constant - Example

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?
$x=2 \pm 1$

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?
$x=2 \pm 1$
$\rightarrow 4 x$ can be as small as $4 \times 1=4$

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?
$x=2 \pm 1$
$\rightarrow 4 x$ can be as small as $4 \times 1=4$
since $2-1=1$

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?
$x=2 \pm 1$
$\rightarrow 4 x$ can be as small as $4 \times 1=4$
since $2-1=1$
$\rightarrow 4 x$ can be as big as $4 \times 3=12$

Multiplication by a constant - Example

Suppose we have a number with an uncertainty, and we multiply it by a constant.
(A constant is a number with no uncertainty.)
What happens to the uncertainty?
$x=2 \pm 1$
$\rightarrow 4 x$ can be as small as $4 \times 1=4$
since $2-1=1$
$\rightarrow 4 x$ can be as big as $4 \times 3=12$
since $2+1=3$
so $4 x=8 \pm 4=(4 \times 2) \pm(4 \times 1)$

Graphically,

The nominal value of x is here. (i.e. the value without considering uncertainties)

Graphically,

If we multiply by $1 / 2$, both x and Δx get smaller.

Multiplication by a constant

To summarize,

To summarize, So in general, $\Delta(C x)=C \Delta x$

To summarize,
So in general, $\Delta(C x)=C \Delta x$
When multiplying by a constant, we multiply the uncertainty by the constant as well.

Multiplication with Multiple Uncertainties

Multiplication with Multiple Uncertainties

What if both numbers have uncertainties?

Multiplication with Multiple Uncertainties - Example

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
z=(x=2 \pm 1) \times(y=32.0 \pm 0.2)
$$

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
\begin{aligned}
& z=(x=2 \pm 1) \times(y=32.0 \pm 0.2) \\
& \rightarrow z \text { can be as small as } 1 \times 31.8=31.8
\end{aligned}
$$

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
\begin{aligned}
& z=(x=2 \pm 1) \times(y=32.0 \pm 0.2) \\
& \rightarrow z \text { can be as small as } 1 \times 31.8=31.8
\end{aligned}
$$

since x can be as small as 1 and y can be as small as 31.8

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
z=(x=2 \pm 1) \times(y=32.0 \pm 0.2)
$$

$\rightarrow z$ can be as small as $1 \times 31.8=31.8$
since x can be as small as 1 and y can be as small as 31.8
$\rightarrow z$ can be as big as $3 \times 32.2=96.6$

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
z=(x=2 \pm 1) \times(y=32.0 \pm 0.2)
$$

$\rightarrow z$ can be as small as $1 \times 31.8=31.8$
since x can be as small as 1 and y can be as small as 31.8
$\rightarrow z$ can be as big as $3 \times 32.2=96.6$
since x can be as big as 3

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
z=(x=2 \pm 1) \times(y=32.0 \pm 0.2)
$$

$\rightarrow z$ can be as small as $1 \times 31.8=31.8$
since x can be as small as 1 and y can be as small as 31.8
$\rightarrow z$ can be as big as $3 \times 32.2=96.6$
since x can be as big as 3 and y can be as big as 32.2

Multiplication with Multiple Uncertainties - Example

If we multiply these numbers,

$$
z=(x=2 \pm 1) \times(y=32.0 \pm 0.2)
$$

$\rightarrow z$ can be as small as $1 \times 31.8=31.8$
since x can be as small as 1 and y can be as small as 31.8
$\rightarrow z$ can be as big as $3 \times 32.2=96.6$
since x can be as big as 3 and y can be as big as 32.2

Multiplication by a constant Multiplication with Multiple Uncertainties Multiplication with Multiple Uncertainties

To summarize,

To summarize,

z can be as small as $1 \times 31.8=31.8$

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is

$$
z=2 \times 32.0=64.0
$$

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is
$z=2 \times 32.0=64.0$
So we can say $z \approx 64.0 \pm 32.4$

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is
$z=2 \times 32.0=64.0$
So we can say $z \approx 64.0 \pm 32.4$
and we see that $\Delta z \approx 32.4=\left(\frac{1}{2}+\frac{0.2}{32.0}\right) 64.0=\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) z$

To summarize,

z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is
$z=2 \times 32.0=64.0$
So we can say $z \approx 64.0 \pm 32.4$
and we see that $\Delta z \approx 32.4=\left(\frac{1}{2}+\frac{0.2}{32.0}\right) 64.0=\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) z$
So in general, $\Delta(x y)=x y\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$

To summarize,
z can be as small as $1 \times 31.8=31.8$
z can be as big as $3 \times 32.2=96.6$
The nominal value of z is
$z=2 \times 32.0=64.0$
So we can say $z \approx 64.0 \pm 32.4$
and we see that $\Delta z \approx 32.4=\left(\frac{1}{2}+\frac{0.2}{32.0}\right) 64.0=\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right) z$
So in general, $\Delta(x y)=x y\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$
When multiplying numbers, we add proportional uncertainties.

To show this graphically, remember that the product of two numbers is the area of a rectangle with sides equal to the two lengths.

To show this graphically, remember that the product of two numbers is the area of a rectangle with sides equal to the two lengths.
For illustration purposes, we'll only show uncertainties in one direction.

To show this graphically, remember that the product of two numbers is the area of a rectangle with sides equal to the two lengths.
For illustration purposes, we'll only show uncertainties in one direction.

Just remember that uncertainties can be in either direction.

Graphically,

This is the nominal value of x

Graphically,

The maximum value of x includes Δx.

Graphically,

This is the nominal value of y.

Graphically,

The maximum value of y includes Δy.

Graphically,

This is the nominal value of the area; i.e. $x y$.

Graphically,

This is the maximum value of the area; i.e. $(x+\Delta x) \times$ $(y+\Delta y)$.

Graphically,

This is the difference between the nominal value of the area and the maximum value of the area.

Graphically,

This part of the difference has a size of $x \Delta y$

Graphically,

This part of the difference has a size of $y \Delta x$

Graphically,

This part of the difference has a size of $\Delta x \Delta y$

Graphically,

Because this is relatively small, we'll ignore it.

Graphically,

This is approximately the difference, and has a size of $y \Delta x+$ $x \Delta y$

Multiplication by a constant

Multiplication with Multiple Uncertainties Multiplication with Multiple Uncertainties

So finally,

So finally,

If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or

So finally,

If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$

So finally,
If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$
We can multiply both the top and bottom of the right side by xy so we get

So finally,
If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$
We can multiply both the top and bottom of the right side by $x y$ so we get
$\Delta(x y) \approx \frac{x y}{x y}(y \Delta x+x \Delta y)$

So finally,
If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$
We can multiply both the top and bottom of the right side by $x y$ so we get
$\Delta(x y) \approx \frac{x y}{x y}(y \Delta x+x \Delta y)$
which becomes

So finally,
If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$
We can multiply both the top and bottom of the right side by $x y$ so we get
$\Delta(x y) \approx \frac{x y}{x y}(y \Delta x+x \Delta y)$
which becomes
$\Delta(x y) \approx(x y)\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$

So finally,
If the uncertainty in $x y$ is approximately equal to $y \Delta x+x \Delta y$, or
$\Delta(x y) \approx y \Delta x+x \Delta y$
We can multiply both the top and bottom of the right side by $x y$ so we get
$\Delta(x y) \approx \frac{x y}{x y}(y \Delta x+x \Delta y)$
which becomes
$\Delta(x y) \approx(x y)\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$
Remember that if x or y can be negative, we'll need absolute value signs around the appropriate terms, since uncertainty contributions should always be given as positive numbers.

Recap

Recap

1. When multiplying by a constant, the uncertainty gets multiplied by the constant as well.

Recap

1. When multiplying by a constant, the uncertainty gets multiplied by the constant as well.

$$
4 \times(2 \pm 1)=(4 \times 2) \pm(4 \times 1)=8 \pm 4
$$

Recap

1. When multiplying by a constant, the uncertainty gets multiplied by the constant as well.

$$
4 \times(2 \pm 1)=(4 \times 2) \pm(4 \times 1)=8 \pm 4
$$

2. When multiplying numbers, we add the proportional uncertainties.

Recap

1. When multiplying by a constant, the uncertainty gets multiplied by the constant as well.

$$
4 \times(2 \pm 1)=(4 \times 2) \pm(4 \times 1)=8 \pm 4
$$

2. When multiplying numbers, we add the proportional uncertainties.

$$
\begin{aligned}
(2 \pm 1) \times(32.0 \pm 0.2) & =(2 \times 32.0) \pm(2 \times 32.0)\left(\frac{1}{2}+\frac{0.2}{32.0}\right) \\
& =64.0 \pm 64.0(0.5+0.00625) \\
& =64.0 \pm 32.4
\end{aligned}
$$

Recap - continued

Recap - continued

3. Uncertainties in final results are usually expressed to one significant figure, so the above result becomes

$$
64.0 \pm 32.4=60 \pm 30
$$

