Uncertainties in Measurements Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University

May 9, 2013

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQC2

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

In labs, many numbers are approximate

(日) (同) (三) (三) (三)

DQC2

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

In labs, many numbers are approximate (in other words, they have *uncertainties*)

<ロ> <同> <同> < 同> < 同>

DQ P

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

In labs, many numbers are approximate (in other words, they have *uncertainties*) When combined by addition, subtraction, multiplication, or division, the **results** have uncertainty

イロト イポト イヨト イヨト

DQ P

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

In labs, many numbers are approximate (in other words, they have *uncertainties*) When combined by addition, subtraction, multiplication, or division, the **results** have uncertainty

The uncertainty reflects the range of possible *calculated* values based on the range of possible *data* values.

イロト イポト イヨト イヨト

Meaning of uncertainty Expressing uncertainty

Measurement Uncertainties

In labs, many numbers are approximate

(in other words, they have uncertainties)

When combined by addition, subtraction, multiplication, or division, the **results** have uncertainty

The uncertainty reflects the range of possible *calculated* values based on the range of possible *data* values.

It is the difference between the nominal value and the maximum or minimum value.

・ロト ・ 一 マー・ ・ 日 ト

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

(日) (图) (문) (문) (문)

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

<ロト < 同ト < ヨト < ヨト -

E ∽94@

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

$$x = 2 \pm 1$$

 $\rightarrow x$ can be as *small* as 1

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x$ can be as *small* as 1 since 2 - 1 = 1

<ロト < 同ト < ヨト < ヨト -

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $\begin{aligned} x &= 2 \pm 1 \\ \rightarrow x \text{ can be as } small \text{ as } 1 \\ \text{since } 2 - 1 &= 1 \\ \rightarrow x \text{ can be as } big \text{ as } 3 \end{aligned}$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x$ can be as *small* as 1 since 2 - 1 = 1 $\rightarrow x$ can be as *big* as 3 since 2 + 1 = 3

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x \text{ can be as small as 1}$ since 2 - 1 = 1 $\rightarrow x \text{ can be as big as 3}$ since 2 + 1 = 3 $y = 32.0 \pm 0.2$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQC2

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x \text{ can be as small as 1}$ since 2 - 1 = 1 $\rightarrow x \text{ can be as big as 3}$ since 2 + 1 = 3 $y = 32.0 \pm 0.2$ $\rightarrow y \text{ can be as small as 31.8}$

《曰》 《圖》 《臣》 《臣》

SQC

-

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x \text{ can be as small as 1}$ since 2 - 1 = 1 $\rightarrow x \text{ can be as big as 3}$ since 2 + 1 = 3 $y = 32.0 \pm 0.2$ $\rightarrow y \text{ can be as small as 31.8}$ since 32.0 - 0.2 = 31.8

イロト イポト イヨト イヨト

-

DQ P

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x$ can be as *small* as 1 since 2 - 1 = 1 $\rightarrow x$ can be as *big* as 3 since 2 + 1 = 3 $y = 32.0 \pm 0.2$ \rightarrow y can be as *small* as 31.8 since 32.0 - 0.2 = 31.8 \rightarrow y can be as *big* as 32.2

(日) (同) (三) (三) (三)

JOC P

Meaning of uncertainty Expressing uncertainty

Meaning of uncertainty

 $x = 2 \pm 1$ $\rightarrow x$ can be as *small* as 1 since 2 - 1 = 1 $\rightarrow x$ can be as *big* as 3 since 2 + 1 = 3 $y = 32.0 \pm 0.2$ \rightarrow y can be as *small* as 31.8 since 32.0 - 0.2 = 31.8 \rightarrow y can be as *big* as 32.2 since 32.0 + 0.2 = 32.2

<ロト < 同ト < ヨト < ヨト

JOC P

Meaning of uncertainty Expressing uncertainty

Graphically,



The nominal value of x is here. (i.e. the value without considering uncertainties)

<ロト < 同ト < ヨト < ヨト -

SQC

Graphically,



The minimum value of x is here. (i.e. the value with the uncertainty subtracted)

<ロト < 同ト < ヨト < ヨト -

Meaning of uncertainty Expressing uncertainty

Graphically,

The maximum value of x is here. (i.e. the value with the uncertainty added)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

SQC

Meaning of uncertainty Expressing uncertainty

Graphically,

 Δx

The uncertainty, Δx is here.

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

《曰》《聞》《臣》《臣》

E ∽94@

Meaning of uncertainty Expressing uncertainty

Graphically,

 $\Delta x \Delta x$

The uncertainty, Δx is here and here.

《曰》《聞》《臣》《臣》

 \equiv

Graphically,

 $\Delta x \Delta x$

The uncertainty, Δx is here

and here.

It is the difference between the nominal value and the maximum or minimum value.

<ロト < 同ト < ヨト < ヨト -

Meaning of uncertainty Expressing uncertainty

Expressing uncertainty

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

Meaning of uncertainty Expressing uncertainty

Expressing uncertainty

Remember: Since uncertainties are an indication of the imprecise nature of a quantity, uncertainties are usually only expressed to one decimal place.

ヘロト ヘヨト ヘヨト

DQ P

Meaning of uncertainty Expressing uncertainty

Expressing uncertainty

Remember: Since uncertainties are an indication of the imprecise nature of a quantity, uncertainties are usually only expressed to one decimal place.

(In other words, it doesn't make sense to have an extremely *precise* measure of the *imprecision* in a value!)

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Purpose of Uncertainties

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

《日》《圖》 《臣》 《臣》

E ∽94@

Two measurements (or calculations) of the same quantity will rarely give *exactly* the same value.

<ロ> <同> <同> < 同> < 同>

DQC2

Two measurements (or calculations) of the same quantity will rarely give *exactly* the same value.

The purpose of uncertainties is ultimately to allow numbers to be compared.

イロト イポト イヨト イヨト

DQ P

Two measurements (or calculations) of the same quantity will rarely give *exactly* the same value.

The purpose of uncertainties is ultimately to allow numbers to be compared.

For instance suppose Alice measures a value for the acceleration due to gravity of $g_A = 10.1 \pm 0.3 m/s^2$ and Bob measures a value for the acceleration due to gravity of $g_B = 9.6 \pm 0.4 m/s^2$

・ロト ・ 同ト ・ ヨト ・ ヨト

Two measurements (or calculations) of the same quantity will rarely give *exactly* the same value.

The purpose of uncertainties is ultimately to allow numbers to be compared.

For instance suppose Alice measures a value for the acceleration due to gravity of $g_A = 10.1 \pm 0.3 m/s^2$ and Bob measures a value for the acceleration due to gravity of $g_B = 9.6 \pm 0.4 m/s^2$

Are they different?

・ロト ・ 同ト ・ ヨト ・ ヨト

Two measurements (or calculations) of the same quantity will rarely give *exactly* the same value.

The purpose of uncertainties is ultimately to allow numbers to be compared.

For instance suppose Alice measures a value for the acceleration due to gravity of $g_A = 10.1 \pm 0.3 m/s^2$ and Bob measures a value for the acceleration due to gravity of $g_B = 9.6 \pm 0.4 m/s^2$

Are they different?

・ロト ・ 同ト ・ ヨト ・ ヨト

Purpose of Uncertainties - continued

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

イロト 不得 ト イヨト イヨト 二日

Purpose of Uncertainties - continued

Since Alice's value has a minimum of $10.1-0.3m/s^2 = 9.8m/s^2$ and Bob's value has a maximum of $9.6+0.4m/s^2 = 10m/s^2$, we see they both include the range of values from $9.8 \rightarrow 10.0m/s^2$, so we say that they agree within their experimental uncertainties.

< □ > < □ > < □ >

Purpose of Uncertainties - continued

Since Alice's value has a minimum of $10.1-0.3m/s^2 = 9.8m/s^2$ and Bob's value has a maximum of $9.6+0.4m/s^2 = 10m/s^2$, we see they both include the range of values from $9.8 \rightarrow 10.0m/s^2$, so we say that they agree within their experimental uncertainties.

Whenever two quantities with uncertainties have a range (or even a single value) in common, we say that they agree within their experimental uncertainties.

イロト イポト イヨト イヨト

San

Purpose of Uncertainties - continued

Since Alice's value has a minimum of $10.1-0.3m/s^2 = 9.8m/s^2$ and Bob's value has a maximum of $9.6+0.4m/s^2 = 10m/s^2$, we see they both include the range of values from $9.8 \rightarrow 10.0m/s^2$, so we say that they agree within their experimental uncertainties.

Whenever two quantities with uncertainties have a range (or even a single value) in common, we say that they agree within their experimental uncertainties.

That means the difference can be *entirely* explained by the measurement uncertainties.

イロト イポト イヨト イヨト

DQ P

Summary of Uncertainty Principles

Terry Sturtevant Uncertainties in Measurements Wilfrid Laurier University

イロト イポト イヨト イヨト

DQC2

Summary of Uncertainty Principles

1. All measurements have uncertainties.

イロト イポト イヨト イヨト

SQC

- 1. All measurements have uncertainties.
- 2. Because of this, all calculated results have uncertainties.

JOC P

- 1. All measurements have uncertainties.
- 2. Because of this, all calculated results have uncertainties.
- 3. Uncertainties allow us to *compare* different quantities, by seeing if they *agree* within their uncertainties.

- 4 同 ト - 4 同 ト

- 1. All measurements have uncertainties.
- 2. Because of this, all calculated results have uncertainties.
- 3. Uncertainties allow us to *compare* different quantities, by seeing if they *agree* within their uncertainties.

When quantities *agree* within their uncertainties, that means the difference can be *entirely* explained by the measurement uncertainties.

- 1. All measurements have uncertainties.
- 2. Because of this, all calculated results have uncertainties.
- 3. Uncertainties allow us to *compare* different quantities, by seeing if they *agree* within their uncertainties.

When quantities *agree* within their uncertainties, that means the difference can be *entirely* explained by the measurement uncertainties.

When quantities *don't agree* within their uncertainties, that means the difference *can't be explained by the measurement uncertainties alone*.

イロト イポト イヨト イヨト

- 1. All measurements have uncertainties.
- 2. Because of this, all calculated results have uncertainties.
- 3. Uncertainties allow us to *compare* different quantities, by seeing if they *agree* within their uncertainties.

When quantities *agree* within their uncertainties, that means the difference can be *entirely* explained by the measurement uncertainties.

When quantities *don't agree* within their uncertainties, that means the difference *can't be explained by the measurement uncertainties alone*.

In that case, we calculate the *percent difference* between the two values.

イロト イポト イヨト