Uncertainty Calculations - Division Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University

May 9, 2013

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

イロト イポト イヨト

DQ C

Inversion Division with Multiple Uncertainties

Calculations with uncertainties

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

《曰》 《圖》 《臣》 《臣》

E ∽94@

Inversion Division with Multiple Uncertainties

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

《曰》 《圖》 《臣》 《臣》

DQC2

Inversion Division with Multiple Uncertainties

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of inversion and division.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Inversion Division with Multiple Uncertainties

Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of **inversion** and **division**.

For the following examples, the values of $x = 2 \pm 1$ and $y = 32.0 \pm 0.2$ will be used.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

Inversion

Division with Multiple Uncertainties

Inversion

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

Inversion Division with Multiple Uncertainties

Inversion

Inversion with uncertainties

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

Inversion

Division with Multiple Uncertainties

Inversion - Example

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

E ∽94@

Inversion Division with Multiple Uncertainties

Inversion - Example

If we take the inverse of one of these numbers,

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQC2

Inversion Division with Multiple Uncertainties

Inversion - Example

If we take the inverse of one of these numbers,

 $z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$

Inversion Division with Multiple Uncertainties

Inversion - Example

If we take the inverse of one of these numbers,

$$z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$$

 $\rightarrow z$ can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106$

イロト イポト イヨト イヨト

DQC2

Inversion - Example

If we take the inverse of one of these numbers,

$$z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$$

 $\rightarrow z$ can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106$
since y can be as *big* as 32.2

イロト イポト イヨト イヨト

DQC2

Inversion - Example

If we take the inverse of one of these numbers,

$$z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$$

 $\rightarrow z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106$
since y can be as big as 32.2
 $\rightarrow z \text{ can be as big as } \frac{1}{31.8} = \frac{1}{32.0 - 0.2} \approx 0.03144$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQC2

Inversion - Example

If we take the inverse of one of these numbers,

$$z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$$

 $\rightarrow z$ can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106$
since *y* can be as *big* as 32.2
 $\rightarrow z$ can be as *big* as $\frac{1}{31.8} = \frac{1}{32.0 - 0.2} \approx 0.03144$
since *y* can be as *small* as 31.8

《曰》 《圖》 《臣》 《臣》

DQC2

z can be as small as $\frac{1}{32.2}=\frac{1}{32.0+0.2}\approx 0.03106$

z can be as small as
$$\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$$

The nominal value of z is

z can be as small as
$$\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$$

The nominal value of z is
 $z = \frac{1}{32.0} = 0.03125$

z can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$ The *nominal* value of *z* is $z = \frac{1}{32.0} = 0.03125$ So we can say $z \approx 0.03125 \pm 0.00019$

z can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$ The *nominal* value of *z* is $z = \frac{1}{32.0} = 0.03125$ So we can say $z \approx 0.03125 \pm 0.00019$ and we see that $\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0}\right) 0.03125 = \left(\frac{\Delta y}{y}\right) \frac{1}{y}$

イロト 不得 ト イヨト イヨト 二日

DQ P

z can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$ The *nominal* value of *z* is $z = \frac{1}{32.0} = 0.03125$ So we can say $z \approx 0.03125 \pm 0.00019$ and we see that $\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0}\right) 0.03125 = \left(\frac{\Delta y}{y}\right) \frac{1}{y}$ So in general, $\Delta \frac{1}{y} = \frac{1}{y} \left(\frac{\Delta y}{y}\right)$

San

z can be as *small* as $\frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106$ The *nominal* value of *z* is $z = \frac{1}{32.0} = 0.03125$ So we can say $z \approx 0.03125 \pm 0.00019$ and we see that $\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0}\right) 0.03125 = \left(\frac{\Delta y}{y}\right) \frac{1}{y}$ So in general, $\Delta \frac{1}{y} = \frac{1}{y} \left(\frac{\Delta y}{y}\right)$

The proportional uncertainty in the inverse of a number is the same as the proportional uncertainty in the number.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Inversion Division with Multiple Uncertainties

Division with Multiple Uncertainties

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

《曰》 《圖》 《臣》 《臣》

E ∽94@

Inversion Division with Multiple Uncertainties

Division with Multiple Uncertainties

What if both numbers have uncertainties?

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

= nar

Inversion Division with Multiple Uncertainties

Division with Multiple Uncertainties - Example

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

《曰》 《圖》 《臣》 《臣》

990

Division operates just like multiplication.

<ロト < 同ト < ヨト < ヨト -

DQC2

Division operates just like multiplication. By the rules for multiplication,

- 4 同 1 - 4 三 1 - 4 三 1

DQ C

Division operates just like multiplication. By the rules for multiplication, $\Delta(xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$

- 4 同 ト - 4 同 ト

DQ P

Division operates just like multiplication.

By the rules for multiplication,

$$\Delta(xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

If we want to find the uncertainty in x/y, we can just make a new quantity, w, where

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Division operates just like multiplication.

By the rules for multiplication,

$$\Delta(xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

If we want to find the uncertainty in x/y, we can just make a new quantity, w, where

$$w=1/y$$
, so that

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Division operates just like multiplication.

By the rules for multiplication,

$$\Delta(xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

If we want to find the uncertainty in x/y, we can just make a new quantity, w, where

$$w = 1/y$$
, so that $x/y = xw$, so we know that

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Division operates just like multiplication.

By the rules for multiplication,

$$\Delta(xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

If we want to find the uncertainty in x/y, we can just make a new quantity, w, where

$$w = 1/y$$
, so that
 $x/y = xw$, so we know that
 $\Delta(xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w}\right)$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

《曰》《聞》《臣》《臣》

E ∽94@

$$\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y}$$

《曰》《聞》《臣》《臣》

E ∽94@

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

《曰》《聞》《臣》《臣》

= nar

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

《口》《聞》《臣》《臣》

= nar

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQ C

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta(xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w}\right)$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQ C

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta(xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w}\right)$$
$$\Delta(xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQ C

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w}\right)$$
$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$
$$\Delta \left(\frac{x}{y}\right) \approx \left(\frac{x}{y}\right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

DQ C

$$\Delta w = \Delta (1/y) pprox (1/y) rac{\Delta y}{y} = w rac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w}\right)$$
$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$
$$\Delta \left(\frac{x}{y}\right) \approx \left(\frac{x}{y}\right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

When dividing numbers, we add proportional uncertainties (similar to multiplication).

イロト 不得 ト イヨト イヨト 二日

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

Calculations with Uncertainties	Inversion
Recap	Division with Multiple Uncertainties

$$\Delta\left(\frac{x}{y}\right) \approx \left(\frac{x}{y}\right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

《曰》《卽》《臣》《臣》

ヨー つへで

$$\Delta\left(\frac{x}{y}\right) \approx \left(\frac{x}{y}\right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

When dividing numbers, we add proportional uncertainties (similar to multiplication).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

$$\Delta\left(\frac{x}{y}\right) \approx \left(\frac{x}{y}\right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y}\right)$$

When dividing numbers, we add proportional uncertainties (similar to multiplication).

Remember that if x or y can be negative, we'll need absolute value signs around the appropriate terms, since uncertainty contributions should always be given as positive numbers.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ への◇

Recap

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

ふって 同 ふぼとうぼう (日)

Recap

1. When inverting a number, the *proportional* uncertainty stays the same.

<ロト < 同ト < ヨト < ヨト -

900

Recap

1. When inverting a number, the *proportional* uncertainty stays the same.

$$\frac{1}{32.0 \pm 0.2} = \frac{1}{32.0} \pm \left(\frac{0.2}{32.0}\right) \left(\frac{1}{32.0}\right)$$
$$= 0.03125 \pm (.00625) \, 0.03125$$
$$\approx 0.03125 \pm 0.00019$$

<ロト < 同ト < ヨト < ヨト -

900

Recap - continued

Terry Sturtevant Uncertainty Calculations - Division Wilfrid Laurier University

Recap - continued

2. When dividing numbers, we add the proportional uncertainties.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

Sac

Recap - continued

2. When dividing numbers, we add the proportional uncertainties.

$$\frac{(2\pm1)}{(32.0\pm0.2)} = \left(\frac{2}{32.0}\right) \pm \left(\frac{2}{32.0}\right) \left(\frac{1}{2} + \frac{0.2}{32.0}\right)$$
$$= 0.0625 \pm 0.0625 \left(0.5 + 0.00625\right)$$
$$= 0.0625 \pm 0.0316$$

3. Uncertainties in final results are usually expressed to one significant figure, so the above result becomes

$$0.0625 \pm 0.0316 = 0.06 \pm 0.03$$

・同ト ・ヨト ・ヨト

-