Repeated Measurements
 Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University
May 19, 2011

Overview

Overview

In this document, you'll learn:

Overview

In this document, you'll learn:

- how to determine uncertainties in repeated measurements

Overview

In this document, you'll learn:

- how to determine uncertainties in repeated measurements
- how to determine the optimal number of measurements to take

- \bar{x} is the mean (average)

- σ is the standard deviation

- About $2 / 3$ of the measurements should fall within $\bar{x} \pm \sigma$

- About 95% of the measurements should fall within $\bar{x} \pm 2 \sigma$

- μ is the population mean; i.e. what we'd get with lots of measurements

- The distance between \bar{x} and μ will get smaller as you take more measurements

- The standard deviation of the mean, α, is the distance from \bar{x} within which we expect to find μ

- About $2 / 3$ of the time, μ will be within $\bar{x} \pm \alpha$

- About 95% of the time, μ will be within $\bar{x} \pm 2 \alpha$
- The standard deviation is the spread of points from the average
- The standard deviation is the spread of points from the average
- The standard deviation of the mean is the spread of the sample average from the population average

With a small sample, the shape may be only approximately normal, and the mean will be approximate

With a lot of measurements, the shape should become more normal (Gaussian), and the mean will be more reliable

For example, say you are in a class of about 200 students. On a test, you get 74%. You want to figure out the class average. You try to do it by asking more and more people for their marks.

In the figures that follow, the marks have been divided into bins that are 5 marks wide. So there is a bin for marks from 50 to 55 , a bin for marks from 55 to 60 , etc.

In the figures that follow, the marks have been divided into bins that are 5 marks wide. So there is a bin for marks from 50 to 55 , a bin for marks from 55 to 60, etc.

The horizontal axis shows the centre mark of each bin.

In the figures that follow, the marks have been divided into bins that are 5 marks wide. So there is a bin for marks from 50 to 55 , a bin for marks from 55 to 60, etc.

The horizontal axis shows the centre mark of each bin.
The vertical axis shows how many marks fell in each bin.

In the figures that follow, the marks have been divided into bins that are 5 marks wide. So there is a bin for marks from 50 to 55 , a bin for marks from 55 to 60, etc.

The horizontal axis shows the centre mark of each bin.
The vertical axis shows how many marks fell in each bin. Approximate values of \bar{x}, σ, and α are highlighted.

The numbers may look something like this (for the first ten people):

The numbers may look something like this (for the first ten people):

person	mark
1	73.6
2	76.9
3	66.9
4	78.8
5	64.9
6	65.5
7	72.4
8	69.8
9	69.2
10	71.6

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

person	mark	bin
5	64.9	$60-65$
6	65.5	$65-70$
3	66.9	$65-70$
9	69.2	$65-70$
8	69.8	$65-70$
10	71.6	$70-75$
7	72.4	$70-75$
1	73.6	$70-75$
2	76.9	$75-80$
4	78.8	$75-80$

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

person	mark	bin
5	64.9	$60-65$
6	65.5	$65-70$
3	66.9	$65-70$
9	69.2	$65-70$
8	69.8	$65-70$
10	71.6	$70-75$
7	72.4	$70-75$
1	73.6	$70-75$
2	76.9	$75-80$
4	78.8	$75-80$

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

person	mark	bin
5	64.9	$60-65$
6	65.5	$65-70$
3	66.9	$65-70$
9	69.2	$65-70$
8	69.8	$65-70$
10	71.6	$70-75$
7	72.4	$70-75$
1	73.6	$70-75$
2	76.9	$75-80$
4	78.8	$75-80$

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

person	mark	bin
5	64.9	$60-65$
6	65.5	$65-70$
3	66.9	$65-70$
9	69.2	$65-70$
8	69.8	$65-70$
10	71.6	$70-75$
7	72.4	$70-75$
1	73.6	$70-75$
2	76.9	$75-80$
4	78.8	$75-80$

We can rearrange the numbers in increasing order so that we can make a histogram of the values.

person	mark	bin
5	64.9	$60-65$
6	65.5	$65-70$
3	66.9	$65-70$
9	69.2	$65-70$
8	69.8	$65-70$
10	71.6	$70-75$
7	72.4	$70-75$
1	73.6	$70-75$
2	76.9	$75-80$
4	78.8	$75-80$

$N=10$
$\sigma=4.64 ; 95 \%$ of the marks should be between 62 and 80
$\alpha=1.47 ; 95 \%$ chance class average between 68 and 74

$N=20$
$\sigma=5.40 ; 95 \%$ of the marks should be between 59 and 81
$\alpha=1.21 ; 95 \%$ chance class average between 67.6 and 72.4

$N=40$
$\sigma=5.44 ; 95 \%$ of the marks should be between 58 and 80
$\alpha=0.86 ; 95 \%$ chance class average is between 67.3 and 70.9

$N=80$
$\sigma=5.54 ; 95 \%$ of the marks should be between 58 and 80
$\alpha=0.62 ; 95 \%$ chance class average is between 67.9 and 70.3

$N=150$
$\sigma=5.30 ; 95 \%$ of the marks should be between 59 and 80
$\alpha=0.43 ; 95 \%$ chance class average is between 68.7 and 70.3

Calculating standard deviation

Calculating statistics

The equations for these quantities are:

- The mean (average)

Calculating statistics

The equations for these quantities are:

- The mean (average)
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$

Calculating statistics

The equations for these quantities are:

- The mean (average)
$\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}$
- The standard deviation (spread of points from the average)

Calculating statistics

The equations for these quantities are:

- The mean (average)

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The standard deviation (spread of points from the average)

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
$$

Calculating statistics

The equations for these quantities are:

- The mean (average)

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The standard deviation (spread of points from the average)

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
$$

- The standard deviation of the mean (spread of the sample average from the population average)

Calculating statistics

The equations for these quantities are:

- The mean (average)

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}
$$

- The standard deviation (spread of points from the average)

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}=\frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
$$

- The standard deviation of the mean (spread of the sample average from the population average)
$\alpha=\frac{\sigma}{\sqrt{n}}$

Calculating standard deviation

The mean and standard deviation will change less and less as you take more measurements, but the standard deviation of the mean will keep getting smaller

The mean and standard deviation will change less and less as you take more measurements, but the standard deviation of the mean will keep getting smaller
$\alpha=\frac{\sigma}{\sqrt{n}}$

The mean and standard deviation will change less and less as you take more measurements, but the standard deviation of the mean will keep getting smaller
$\alpha=\frac{\sigma}{\sqrt{n}}$
The standard deviation will always be bigger than the standard deviation of the mean

Calculating standard deviation

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
n	$\sum x_{i}$	$\sum x_{i}^{2}$
1	1.1	1.21

Calculating standard deviation

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
n	$\sum x_{i}$	$\sum x_{i}^{2}$
2	2.5	3.17

Calculating standard deviation

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
n	$\sum x_{i}$	$\sum x_{i}^{2}$
3	3.8	4.86

Calculating standard deviation

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

$$
\sigma=\frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}}
$$

Calculating standard deviation

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

$$
\begin{aligned}
& \sigma=\frac{1}{\sqrt{n-1}} \sqrt{\sum_{i=1}^{n} x_{i}^{2}-\frac{\left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n}} \\
& =\frac{1}{\sqrt{4-1}} \sqrt{6.3-\frac{(5.0)^{2}}{4}}=0.13
\end{aligned}
$$

Calculating standard deviation
Calculating standard deviation of the mean Unknown precision measure

Calculating standard deviation of the mean

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

$$
\sigma=0.13
$$

Calculating standard deviation
Calculating standard deviation of the mean Unknown precision measure

Calculating standard deviation of the mean

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

$$
\begin{aligned}
& \sigma=0.13 \\
& \alpha=\frac{\sigma}{\sqrt{n}}=\frac{0.13}{\sqrt{4}}=0.064
\end{aligned}
$$

Unknown precision measure

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

If we're not given the precision measure of the x values, how can we estimate its value?

Unknown precision measure

i	x_{i}	x_{i}^{2}
1	1.1	1.21
2	1.4	1.96
3	1.3	1.69
4	1.2	1.44
n	$\sum x_{i}$	$\sum x_{i}^{2}$
4	5.0	6.3

If we're not given the precision measure of the x values, how can we estimate its value?
We can assume it is 0.1 since that's the smallest gap between x values.

Calculating standard deviation
Calculating standard deviation of the mean
Unknown precision measure
Uncertainty in the average
Calculating uncertainty in the average

Uncertainty in the average

Calculating standard deviation

Uncertainty in the average

The uncertainty in the average of a set of measurements is based on two things:

Uncertainty in the average

The uncertainty in the average of a set of measurements is based on two things:

- The uncertainty in the individual measurements

Uncertainty in the average

The uncertainty in the average of a set of measurements is based on two things:

- The uncertainty in the individual measurements
- The scatter of the data values

Uncertainty in the average

The uncertainty in the average of a set of measurements is based on two things:

- The uncertainty in the individual measurements
- The scatter of the data values

The uncertainty in the average should be determined by the bigger of these two quantities

Calculating standard deviation
Calculating standard deviation of the mean
Unknown precision measure
Uncertainty in the average
Calculating uncertainty in the average

The uncertainty in the individual measurements

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities
- For recorded values of unknown precision measure, use the smallest space between two values given

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities
- For recorded values of unknown precision measure, use the smallest space between two values given
The scatter of the data values

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities
- For recorded values of unknown precision measure, use the smallest space between two values given
The scatter of the data values
- The standard deviation of the mean,

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities
- For recorded values of unknown precision measure, use the smallest space between two values given
The scatter of the data values
- The standard deviation of the mean, since it gives the range around the calculated (sample) average where you expect to find the "ideal" (population) average

The uncertainty in the individual measurements

- This would usually be the precision measure for measured quantities
- For recorded values of unknown precision measure, use the smallest space between two values given
The scatter of the data values
- The standard deviation of the mean, since it gives the range around the calculated (sample) average where you expect to find the "ideal" (population) average
The uncertainty in the average is the bigger of these two quantities; the precision measure and the standard deviation of the mean.

Calculating standard deviation
Calculating standard deviation of the mean
Unknown precision measure
Uncertainty in the average
Calculating uncertainty in the average

Calculating uncertainty in the average

Calculating uncertainty in the average

If we're not given the precision measure of the x values, we can assume it is 0.1 since that's the smallest gap between x values.

Calculating uncertainty in the average

If we're not given the precision measure of the x values, we can assume it is 0.1 since that's the smallest gap between x values.
$\alpha=\frac{\sigma}{\sqrt{n}}=\frac{0.13}{\sqrt{4}}=0.064$

Calculating standard deviation

The uncertainty in the average is the bigger of precision measure,

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example),

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α,

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α, (which is 0.064 in this example),

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α, (which is 0.064 in this example), so in this case the uncertainty is 0.1 .

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α, (which is 0.064 in this example), so in this case the uncertainty is 0.1 . (In other words, since the original values are only given to 0.1 , we can't have an average with more than one place after the decimal.)

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α, (which is 0.064 in this example), so in this case the uncertainty is 0.1 . (In other words, since the original values are only given to 0.1 , we can't have an average with more than one place after the decimal.)
Thus $\bar{x}=1.25 \pm 0.1$

The uncertainty in the average is the bigger of precision measure, (which is 0.1 in this example), and α, (which is 0.064 in this example), so in this case the uncertainty is 0.1 . (In other words, since the original values are only given to 0.1 , we can't have an average with more than one place after the decimal.)
Thus $\bar{x}=1.25 \pm 0.1$
$=1.2 \pm 0.1$ after rounding

Optimal number of measurements

Optimal number of measurements

- Taking more and more measurements to average gets less effective

Optimal number of measurements

- Taking more and more measurements to average gets less effective
- You have taken the optimal number of measurements when the precision measure and the standard deviation of the mean are equal

Optimal number of measurements

- Taking more and more measurements to average gets less effective
- You have taken the optimal number of measurements when the precision measure and the standard deviation of the mean are equal
- Since $\alpha=\frac{\sigma}{\sqrt{n}}$,

Optimal number of measurements

- Taking more and more measurements to average gets less effective
- You have taken the optimal number of measurements when the precision measure and the standard deviation of the mean are equal
- Since $\alpha=\frac{\sigma}{\sqrt{n}}$,
if $\alpha_{\text {optimal }}=$ precision measure when $n=N_{\text {optimal }}$,

Optimal number of measurements

- Taking more and more measurements to average gets less effective
- You have taken the optimal number of measurements when the precision measure and the standard deviation of the mean are equal
- Since $\alpha=\frac{\sigma}{\sqrt{n}}$,
if $\alpha_{\text {optimal }}=$ precision measure when $n=N_{\text {optimal }}$, then precision measure $=\alpha_{\text {optimal }}=\frac{\sigma}{\sqrt{N_{\text {optimal }}}}$

Optimal number of measurements

- Taking more and more measurements to average gets less effective
- You have taken the optimal number of measurements when the precision measure and the standard deviation of the mean are equal
- Since $\alpha=\frac{\sigma}{\sqrt{n}}$,
if $\alpha_{\text {optimal }}=$ precision measure when $n=N_{\text {optimal }}$, then precision measure $=\alpha_{\text {optimal }}=\frac{\sigma}{\sqrt{N_{\text {optimal }}}}$
so $N_{\text {optimal }}=\left(\frac{\sigma}{\text { precision measure }}\right)^{2}$
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- If, instead the precision measure was 0.01 and $\alpha=0.064$, then we could take more measurements
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- If, instead the precision measure was 0.01 and $\alpha=0.064$, then we could take more measurements
- $N_{\text {optimal }}=\left(\frac{\sigma}{\text { precision measure }}\right)^{2}$
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- If, instead the precision measure was 0.01 and $\alpha=0.064$, then we could take more measurements
- $N_{\text {optimal }}=\left(\frac{\sigma}{\text { precision measure }}\right)^{2}$
$=\left(\frac{0.13}{0.01}\right)^{2}$
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- If, instead the precision measure was 0.01 and $\alpha=0.064$, then we could take more measurements
- $N_{\text {optimal }}=\left(\frac{\sigma}{\text { precision measure }}\right)^{2}$
$=\left(\frac{0.13}{0.01}\right)^{2}$
$=(13)^{2}=169$
- From the previous example, where the precision measure is 0.1 and $\alpha=0.064$, then we already have enough measurements
- If, instead the precision measure was 0.01 and $\alpha=0.064$, then we could take more measurements
- $N_{\text {optimal }}=\left(\frac{\sigma}{\text { precision measure }}\right)^{2}$
$=\left(\frac{0.13}{0.01}\right)^{2}$
$=(13)^{2}=169$
So we could take about another 164 measurements.

How to improve the experiment

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

- If the precision measure is bigger than the standard deviation of the mean, we can improve the experiment by getting a more precise instrument.

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

- If the precision measure is bigger than the standard deviation of the mean, we can improve the experiment by getting a more precise instrument.
- If the standard deviation of the mean is bigger than the precision measure, we can improve the experiment by taking more measurements.

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

- If the precision measure is bigger than the standard deviation of the mean, we can improve the experiment by getting a more precise instrument.
- If the standard deviation of the mean is bigger than the precision measure, we can improve the experiment by taking more measurements.

When we have the optimal number of measurements,

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

- If the precision measure is bigger than the standard deviation of the mean, we can improve the experiment by getting a more precise instrument.
- If the standard deviation of the mean is bigger than the precision measure, we can improve the experiment by taking more measurements.

When we have the optimal number of measurements, (i.e. precision measure equals the standard deviation of the mean),

How to improve the experiment

Improving an experiment means reducing the uncertainty in the result.

- If the precision measure is bigger than the standard deviation of the mean, we can improve the experiment by getting a more precise instrument.
- If the standard deviation of the mean is bigger than the precision measure, we can improve the experiment by taking more measurements.

When we have the optimal number of measurements, (i.e. precision measure equals the standard deviation of the mean), we would have to do both in order to improve the experiment.

Recap

Recap

(1) The average is better than a single data value.

Recap

(1) The average is better than a single data value.
(2) The uncertainty in the average is the bigger of the standard deviation of the mean and the precision measure.

Recap

(1) The average is better than a single data value.
(2) The uncertainty in the average is the bigger of the standard deviation of the mean and the precision measure. If the precision measure is unknown, use the smallest difference between data values.

Recap

(1) The average is better than a single data value.
(2) The uncertainty in the average is the bigger of the standard deviation of the mean and the precision measure.
If the precision measure is unknown, use the smallest difference between data values.
(3) The optimal number of measurements have been taken when the standard deviation of the mean equals the precision measure.

Recap

(1) The average is better than a single data value.
(2) The uncertainty in the average is the bigger of the standard deviation of the mean and the precision measure.
If the precision measure is unknown, use the smallest difference between data values.
(3) The optimal number of measurements have been taken when the standard deviation of the mean equals the precision measure.
(4) How to improve the experiment depends on which quantity is bigger; the standard deviation of the mean or the precision measure.

