Uncertainty Calculations - Division
Wilfrid Laurier University

Terry Sturtevant

Wilfrid Laurier University

May 9, 2013
Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well. Following is a discussion of inversion and division.

For the following examples, the values of $x = 2 \pm 1$ and $y = 32 \pm 0.2$ will be used.
Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.
Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of **inversion** and **division**.
Calculations with uncertainties

When quantities with uncertainties are combined, the results have uncertainties as well.

Following is a discussion of inversion and division.

For the following examples, the values of $x = 2 \pm 1$ and $y = 32.0 \pm 0.2$ will be used.
Inversion with uncertainties
Inversion - Example

If we take the inverse of one of these numbers, $z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2}$. z can be as small as $1/32.2 = 1/32.0 + 0.2 \approx 0.03106$ since y can be as big as 32.2. z can be as big as $1/31.8 = 1/32.0 - 0.2 \approx 0.03144$ since y can be as small as 31.8.

Terry Sturtevant
Uncertainty Calculations - Division Wilfrid Laurier University
Inversion - Example

If we take the inverse of one of these numbers,
Inversion - Example

If we take the inverse of one of these numbers,

\[z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2} \]
Inversion - Example

If we take the inverse of one of these numbers,

\[z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2} \]

\[\rightarrow z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0 \pm 0.2} \approx 0.03106 \]
Inversion - Example

If we take the inverse of one of these numbers,

\[z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2} \]

\[\rightarrow z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0 \pm 0.2} \approx 0.03106 \]

since \(y \) can be as big as \(32.2 \)
Inversion - Example

If we take the inverse of one of these numbers,

\[z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2} \]

→ \(z \) can be as small as \(\frac{1}{32.2} = \frac{1}{32.0 \pm 0.2} \approx 0.03106 \) since \(y \) can be as big as 32.2

→ \(z \) can be as big as \(\frac{1}{31.8} = \frac{1}{32.0 \pm 0.2} \approx 0.03144 \)
If we take the inverse of one of these numbers,

\[z = \frac{1}{y} = \frac{1}{32.0 \pm 0.2} \]

→ \(z \) can be as small as \(\frac{1}{32.2} = \frac{1}{32.0 \pm 0.2} \approx 0.03106 \)

since \(y \) can be as big as 32.2

→ \(z \) can be as big as \(\frac{1}{31.8} = \frac{1}{32.0 - 0.2} \approx 0.03144 \)

since \(y \) can be as small as 31.8
To summarize,

\[z = \frac{1}{32} = 0.03125 \]

The nominal value of \(z \) is:

\[z = 0.03125 \]

So we can say:

\[z \approx 0.03125 \pm 0.00019 \]

and we see that:

\[\Delta z \approx 0.00019 = \left(\frac{0.2}{y} \right) \left(\frac{\Delta y}{y} \right) \]

The proportional uncertainty in the inverse of a number is the same as the proportional uncertainty in the number.
To summarize,

\[z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106 \]
To summarize,

\[z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106 \]

The nominal value of \(z \) is
To summarize,

\[z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106 \]

The *nominal* value of \(z \) is

\[z = \frac{1}{32.0} = 0.03125 \]
To summarize,

\[
z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106
\]

The nominal value of \(z \) is

\[
z = \frac{1}{32.0} = 0.03125
\]

So we can say \(z \approx 0.03125 \pm 0.00019 \)
To summarize,

\[z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0+0.2} \approx 0.03106 \]

The *nominal* value of \(z \) is

\[z = \frac{1}{32.0} = 0.03125 \]

So we can say \(z \approx 0.03125 \pm 0.00019 \)

and we see that \(\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0} \right) 0.03125 = \left(\frac{\Delta y}{y} \right) \frac{1}{y} \)
To summarize,

\[z \text{ can be as small as } \frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106 \]

The *nominal* value of \(z \) is

\[z = \frac{1}{32.0} = 0.03125 \]

So we can say \(z \approx 0.03125 \pm 0.00019 \)

and we see that \(\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0} \right) 0.03125 = \left(\frac{\Delta y}{y} \right) \frac{1}{y} \)

So in general, \(\Delta \frac{1}{y} = \frac{1}{y} \left(\frac{\Delta y}{y} \right) \)
To summarize,

$$z$$ can be as small as \(\frac{1}{32.2} = \frac{1}{32.0 + 0.2} \approx 0.03106 \)

The *nominal* value of \(z \) is

\[
z = \frac{1}{32.0} = 0.03125
\]

So we can say \(z \approx 0.03125 \pm 0.00019 \)

and we see that \(\Delta z \approx 0.00019 = \left(\frac{0.2}{32.0} \right) 0.03125 = \left(\frac{\Delta y}{y} \right) \frac{1}{y} \)

So in general, \(\Delta \frac{1}{y} = \frac{1}{y} \left(\frac{\Delta y}{y} \right) \)

The **proportional** uncertainty in the inverse of a number is the same as the **proportional** uncertainty in the number.
Division with Multiple Uncertainties
Division with Multiple Uncertainties

What if both numbers have uncertainties?
Division with Multiple Uncertainties - Example

Division operates just like multiplication. By the rules for multiplication,
\[
\Delta \left(\frac{xy}{y} \right) \approx \left(\frac{xy}{y} \right) \left(\Delta x + \Delta y \right).
\]

If we want to find the uncertainty in \(\frac{x}{y} \), we can just make a new quantity, \(w \), where \(w = \frac{1}{y} \), so that \(\frac{x}{y} = xw \), so we know that
\[
\Delta \left(\frac{xw}{y} \right) \approx \left(\frac{xw}{y} \right) \left(\Delta x + \Delta w \right).
\]
Division operates just like multiplication.
Division with Multiple Uncertainties - Example

Division operates just like multiplication.

By the rules for multiplication,
Division with Multiple Uncertainties - Example

Division operates just like multiplication.

By the rules for multiplication,

\[\Delta (xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]
Division with Multiple Uncertainties - Example

Division operates just like multiplication.

By the rules for multiplication,

\[\Delta (xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]

If we want to find the uncertainty in \(x/y \), we can just make a new quantity, \(w \), where
Division operates just like multiplication.

By the rules for multiplication,

$$\Delta (xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right)$$

If we want to find the uncertainty in x/y, we can just make a new quantity, w, where

$$w = 1/y$$

so that
Division with Multiple Uncertainties - Example

Division operates just like multiplication.

By the rules for multiplication,

\[\Delta (xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]

If we want to find the uncertainty in \(x/y \), we can just make a new quantity, \(w \), where

\[w = 1/y, \text{ so that} \]

\[x/y = xw, \text{ so we know that} \]
Division with Multiple Uncertainties - Example

Division operates just like multiplication.

By the rules for multiplication,

\[\Delta (xy) \approx (xy) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]

If we want to find the uncertainty in \(x/y \), we can just make a new quantity, \(w \), where

\[w = 1/y, \text{ so that} \]
\[x/y = xw, \text{ so we know that} \]

\[\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w} \right) \]
By the rules for inversion, we know that,
By the rules for inversion, we know that,
\[\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y} \]
By the rules for inversion, we know that,
\[
\Delta w = \Delta (1/y) \approx \frac{\Delta y}{y} = w \frac{\Delta y}{y}
\]
Which could also be written as
By the rules for inversion, we know that,
\[\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y} \]
Which could also be written as
\[\frac{\Delta w}{w} \approx \frac{\Delta y}{y} \]
By the rules for inversion, we know that,
\[\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y} \]
Which could also be written as
\[\frac{\Delta w}{w} \approx \frac{\Delta y}{y} \]
So by combining these two rules we get
By the rules for inversion, we know that,

\[\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y} \]

Which could also be written as

\[\frac{\Delta w}{w} \approx \frac{\Delta y}{y} \]

So by combining these two rules we get

\[\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w} \right) \]
By the rules for inversion, we know that,

$$\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = w \frac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w} \right)$$

$$\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right)$$
By the rules for inversion, we know that,
\[\Delta w = \Delta (1/y) \approx (1/y) \frac{\Delta y}{y} = \frac{w}{y} \Delta y \]
Which could also be written as
\[\frac{\Delta w}{w} \approx \frac{\Delta y}{y} \]
So by combining these two rules we get
\[\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w} \right) \]
\[\Delta (xw) \approx (xw) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]
\[\Delta \left(\frac{x}{y} \right) \approx \left(\frac{x}{y} \right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]
By the rules for inversion, we know that,

$$\Delta w = \Delta \left(\frac{1}{y}\right) \approx \left(\frac{1}{y}\right) \frac{\Delta y}{y} = w \frac{\Delta y}{y}$$

Which could also be written as

$$\frac{\Delta w}{w} \approx \frac{\Delta y}{y}$$

So by combining these two rules we get

$$\Delta \left(xw \right) \approx \left(xw \right) \left(\frac{\Delta x}{x} + \frac{\Delta w}{w} \right)$$

$$\Delta \left(\frac{x}{y} \right) \approx \left(\frac{x}{y} \right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right)$$

When dividing numbers, we add proportional uncertainties (similar to multiplication).
To summarize,
To summarize,

\[\Delta \left(\frac{x}{y} \right) \approx \left(\frac{x}{y} \right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]
To summarize,

$$\Delta \left(\frac{x}{y} \right) \approx \left(\frac{x}{y} \right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right)$$

When dividing numbers, we add proportional uncertainties (similar to multiplication).
To summarize,

\[\Delta \left(\frac{x}{y} \right) \approx \left(\frac{x}{y} \right) \left(\frac{\Delta x}{x} + \frac{\Delta y}{y} \right) \]

When dividing numbers, we add proportional uncertainties (similar to multiplication).

Remember that if \(x \) or \(y \) can be negative, we’ll need absolute value signs around the appropriate terms, since uncertainty contributions should always be given as positive numbers.
Recap

1. When inverting a number, the proportional uncertainty stays the same.

\[\frac{1}{0.32} = 3.125 \pm \frac{0.0625}{3.125} = 3.125 \pm 0.00019 \]
1. When inverting a number, the *proportional* uncertainty stays the same.
Recap

1. When inverting a number, the proportional uncertainty stays the same.

\[
\frac{1}{32.0 \pm 0.2} = \frac{1}{32.0} \pm \left(\frac{0.2}{32.0} \right) \left(\frac{1}{32.0} \right) \\
= 0.03125 \pm (0.00625) 0.03125 \\
\approx 0.03125 \pm 0.00019
\]
Recap - continued

When dividing numbers, we add the proportional uncertainties.

\[(2 \pm 1) \div (32 \pm 0.2) = (232.0) \pm (232.0) \left(1 + 0.2 \cdot 32.0\right) = 0.0625 \pm 0.0316 \text{ (0.5 + 0.00625)}\]

Uncertainties in final results are usually expressed to one significant figure, so the above result becomes \(0.06 \pm 0.03\).
Recap - continued

2. When dividing numbers, we add the *proportional* uncertainties.
2. When dividing numbers, we add the proportional uncertainties.

\[
\frac{(2 \pm 1)}{(32.0 \pm 0.2)} = \left(\frac{2}{32.0} \right) \pm \left(\frac{2}{32.0} \right) \left(\frac{1}{2} + \frac{0.2}{32.0} \right)
\]

\[
= 0.0625 \pm 0.0625 (0.5 + 0.00625)
\]

\[
= 0.0625 \pm 0.0316
\]

3. Uncertainties in final results are usually expressed to one significant figure, so the above result becomes

\[
0.0625 \pm 0.0316 = 0.06 \pm 0.03
\]