Lab Experiment - Measuring 'g'

Terry Sturtevant

Wilfrid Laurier University

January 7, 2015

mean and median

1 mean and median
The median is a quick estimate for the mean.

- mean and median
 The median is a quick estimate for the mean.
- standard deviation and range/4

- mean and median
 The median is a quick estimate for the mean.
- Standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.

- mean and median
 The median is a quick estimate for the mean.
- Standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- standard deviation of the mean

- mean and median
 The median is a quick estimate for the mean.
- standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- standard deviation of the mean
- precision measure

- mean and median
 The median is a quick estimate for the mean.
- 2 standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- 3 standard deviation of the mean
- precision measure (for digital instruments)

- mean and median
 The median is a quick estimate for the mean.
- Standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- 3 standard deviation of the mean
- precision measure (for digital instruments)
- uncertainty in the average

- mean and median
 The median is a quick estimate for the mean.
- 2 standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- 3 standard deviation of the mean
- precision measure (for digital instruments)
- uncertainty in the average
 - The *bigger* of the precision measure and the standard deviation of the mean

- mean and median
 The median is a quick estimate for the mean.
- 2 standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- 3 standard deviation of the mean
- precision measure (for digital instruments)
- uncertainty in the average

The *bigger* of the precision measure and the standard deviation of the mean

Which one it is tells you how you can improve the experiment.

- mean and median
 The median is a quick estimate for the mean.
- 2 standard deviation and range/4
 The range/4 is a quick estimate for the standard deviation.
- 3 standard deviation of the mean
- precision measure (for digital instruments)
- uncertainty in the average

The *bigger* of the precision measure and the standard deviation of the mean

Which one it is tells you how you can improve the experiment.

Parts of an experiment

Data collection

- Data collection
- Data transformation

- Data collection
- Data transformation
- Data combination

- Data collection
- Data transformation
- Data combination
- Data analysis and interpretation

Parts of an experiment

- Data collection
- Data transformation
- Data combination
- Data analysis and interpretation

Only the first part happens in the labs.

Research questions

What is the acceleration due to gravity?

Research questions

What is the acceleration due to gravity? This has a *quantitative* answer.

Research questions

What is the acceleration due to gravity?
 This has a quantitative answer.
 We'll want to compare this with our expectations.

- What is the acceleration due to gravity?
 This has a quantitative answer.
 We'll want to compare this with our expectations.
- 2 Can we see the effects of air resistance?

- What is the acceleration due to gravity?
 This has a quantitative answer.
 We'll want to compare this with our expectations.
- ② Can we see the effects of air resistance? This has a *qualitative* answer.

- What is the acceleration due to gravity?
 This has a quantitative answer.
 We'll want to compare this with our expectations.
- ② Can we see the effects of air resistance?

 This has a *qualitative* answer.
 - We'll want to *discuss* how this fits with our expectations.

Research questions

- ① What is the acceleration due to gravity?

 This has a *quantitative* answer.
 - We'll want to *compare* this with our expectations.
- ② Can we see the effects of air resistance? This has a *qualitative* answer.
 - We'll want to *discuss* how this fits with our expectations.

There may be others that will come up along the way.

Why this experiment?

Why this experiment?

Simple physics

Why this experiment?

- Simple physics
- 2 Simple equipment

Why this experiment?

- Simple physics
- 2 Simple equipment

Since the physics and equipment are familiar, only the *process* is new.

Equipment

Equipment

Falling objects

Equipment

- Falling objects
- Instrument for measuring time

Equipment

- Falling objects
- Instrument for measuring time
- Instrument for measuring height

Equipment

- Falling objects
- Instrument for measuring time
- Instrument for measuring height

There are a few other pieces as well.

Falling bodies

The target

The target (falling object's eye view)

Time measurement (one option)

Time measurement (another option)

Height measurement

The "laboratory"

Method

Method

• Try four different timing techniques with *one* type of ball.

Method

Try four different timing techniques with one type of ball.
 Determine which seems "best".

Method

- Try four different timing techniques with one type of ball.
 Determine which seems "best".
- Use the "best" technique to try and observe the effects of air resistance using the other type of ball.

Method

- Try four different timing techniques with one type of ball.
 Determine which seems "best".
- Use the "best" technique to try and observe the effects of air resistance using the other type of ball.
 - (Or you could use all four techniques for both types of ball and figure out which was "best" after.)

Method

- Try four different timing techniques with one type of ball.
 Determine which seems "best".
- Use the "best" technique to try and observe the effects of air resistance using the other type of ball.
 - (Or you could use all four techniques for both types of ball and figure out which was "best" after.)

Often technique matters a lot.

What are the four techniques?

What are the four techniques?

Two partners, A and B.

What are the four techniques?

- Two partners, A and B.
- Two roles, 'dropper' and 'gofer'.

What are the four techniques?

- Two partners, A and B.
- Two roles, 'dropper' and 'gofer'.
 Either person can be in either role.

What are the four techniques?

- Two partners, A and B.
- Two roles, 'dropper' and 'gofer'.
 Either person can be in either role.

This makes four possibilities of technique.

How do you determine the "best" technique?

How do you determine the "best" technique?

Precision

How do you determine the "best" technique?

- Precision
- Accuracy

How do you determine the "best" technique?

- Precision
- Accuracy

These may not both indicate the same technique as "best".

When is the lab report due?

When is the lab report due?

Two labs from now

When is the lab report due?

Two labs from now
 You have another exercise to do first

When is the lab report due?

- Two labs from now
 You have another exercise to do first
- What about the post-lab questions?

When is the lab report due?

- Two labs from now
 You have another exercise to do first
- What about the post-lab questions?
 Not now; they will be part of the lab report.

When is the lab report due?

- Two labs from now
 You have another exercise to do first
- What about the post-lab questions?
 Not now; they will be part of the lab report.

Before your next lab, you'll only have pre-lab requirements to complete.

Next lab exercise

Next lab exercise

• The next exercise doesn't use any lab equipment

Next lab exercise

The next exercise doesn't use any lab equipment
 You can do it entirely on your own ahead of the lab

Next lab exercise

- The next exercise doesn't use any lab equipment
 You can do it entirely on your own ahead of the lab
- If so, you'll just need to hand things in during your lab period