# Electronics Resistors and Resistance

Terry Sturtevant

Wilfrid Laurier University

February 16, 2010

э

DQ P

#### In this document, you'll learn:

▲ロト ▲圖ト ▲注ト ▲注ト

E

In this document, you'll learn:

#### • what voltage, current, and resistance mean

・ロト ・部 ト ・ヨト ・ヨト

Э

SQR

In this document, you'll learn:

- what voltage, current, and resistance mean
- how to measure them

<ロト < 同ト < ヨト < ヨト -

3

SQA

In this document, you'll learn:

- what voltage, current, and resistance mean
- how to measure them

<ロト < 同ト < ヨト < ヨト -

3

SQA

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

#### Current

Terry Sturtevant Electronics Resistors and Resistance

▲ロト ▲圖ト ▲注ト ▲注ト

E

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

#### Current

#### • symbol is *I*

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回ト ・ヨト ・ヨト

E

Current Resistance Voltage

## Current

- symbol is *I*
- property of a point in a circuit; indicates the rate of flow of electric charge past the point

イロト イポト イヨト イヨト

э

DQ P

Current Resistance Voltage

## Current

- symbol is *I*
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Current Resistance Voltage

## Current

- symbol is *I*
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second
- measured in *amperes* or amps [A] using an *ammeter*

・ロト ・ 一 マ ト ・ 日 ト

Current Resistance Voltage

## Current

- symbol is *I*
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second
- measured in *amperes* or amps [A] using an *ammeter*
- measured at a point ; in series

イロト イポト イヨト イヨト

Current Resistance Voltage

# Current

- symbol is *I*
- property of a point in a circuit; indicates the rate of flow of electric charge past the point
- A current of one **ampere** equals a flow of one **coulomb** of charge per second
- measured in *amperes* or amps [A] using an *ammeter*
- measured at a point ; in series

By convention, the direction of current flow in a circuit is opposite to the direction of electron flow (*Blame Benjamin Franklin.*)

イロト イポト イヨト イヨト

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

#### Resistance

Terry Sturtevant Electronics Resistors and Resistance

▲ロト ▲圖ト ▲注ト ▲注ト

E

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current **Resistance** Voltage

#### Resistance

• symbol is R.

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・部 ト ・ヨト ・ヨト

E

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current **Resistance** Voltage

#### Resistance

- symbol is *R*.
- property of a device that limits the flow of current

(日) (同) (三) (三)

э

DQ P

Current **Resistance** Voltage

### Resistance

- symbol is *R*.
- property of a device that limits the flow of current
- A potential difference of one **volt** produces a **current** of one ampere for a current with one ohm **resistance**.

- 4 同 ト 4 三 ト

Current **Resistance** Voltage

### Resistance

- symbol is *R*.
- property of a device that limits the flow of current
- A potential difference of one **volt** produces a **current** of one ampere for a current with one ohm **resistance**.
- measured in **Ohms**  $(\Omega)$  using an **ohmmeter**

Current **Resistance** Voltage

### Resistance

- symbol is R.
- property of a device that limits the flow of current
- A potential difference of one **volt** produces a **current** of one ampere for a current with one ohm **resistance**.
- measured in **Ohms**  $(\Omega)$  using an **ohmmeter**

An ohm is "small".

イロト イポト イヨト イヨト

Current **Resistance** Voltage

### Resistance

- symbol is *R*.
- property of a device that limits the flow of current
- A potential difference of one **volt** produces a **current** of one ampere for a current with one ohm **resistance**.
- measured in Ohms (Ω) using an ohmmeter
  An ohm is "small".
  kΩ (10<sup>3</sup> ohms) or MΩ (10<sup>6</sup> ohms) are common.

イロト イポト イヨト イヨト

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Voltage

Terry Sturtevant Electronics Resistors and Resistance

▲ロト ▲圖ト ▲注ト ▲注ト

E

990

Voltage

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Voltage

• symbol is V.

・ロト ・回ト ・ヨト ・ヨト

E

990

Voltage

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead

Power

(日) (同) (三) (三)

Э

nar

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

(日) (同) (三) (三)

1

DQ P

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

• property of a circuit that produces the flow of current

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

- property of a circuit that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.

イロト イポト イヨト イヨト

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

- property of a circuit that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.

A *joule* of work is needed to move a *coulomb of charge* through a potential difference of one volt.

(日) (同) (三) (三)

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

- property of a circuit that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.

A *joule* of work is needed to move a *coulomb of charge* through a potential difference of one volt.

• Potential difference

イロト イポト イヨト イヨト

Current Resistance Voltage

# Voltage

• symbol is V.

(in physics the symbol E will sometimes be used instead because it is also called **electromotive force**)

- property of a circuit that produces the flow of current
- An eV of work is needed to move an electron through a potential difference of one volt.

A *joule* of work is needed to move a *coulomb of charge* through a potential difference of one volt.

- Potential *difference*
- Measured in volts using a voltmeter

(日) (同) (三) (三)

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

# Voltage (continued)

Terry Sturtevant Electronics Resistors and Resistance

<ロト <回ト < 回ト < 回ト

E

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

# Voltage (continued)

• measured across a device or between two points;

Terry Sturtevant Electronics Resistors and Resistance

(日) (同) (三) (三)

э

DQ P

Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage

# Voltage (continued)

 measured across a device or between two points; (it is a "difference")

(日) (同) (三) (三)

э

DQ P

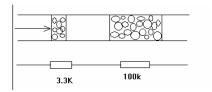
Water analogy Ohm's Law Resistors and Measuring Resistance Ground Circuits Power

Current Resistance Voltage



- measured across a device or between two points;
  (it is a "difference")
- if measured at a *point* in a circuit, that means it is measured between the point and *ground*

- 4 同 1 - 4 回 1 - 4 回 1

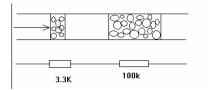

### Water analogy

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回ト ・ヨト ・ヨト

E

#### Water analogy




Terry Sturtevant Electronics Resistors and Resistance

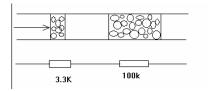
◆ロ > ◆母 > ◆臣 > ◆臣 >

E

### Water analogy



• voltage  $\rightarrow$  pressure


Terry Sturtevant Electronics Resistors and Resistance

< □ > < □ > < □ > < □</p>

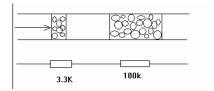
-≺≣⇒

3

#### Water analogy



- voltage  $\rightarrow$  pressure
- $\bullet~$  electric current  $\rightarrow$  water current


▲ 伊 ▶ ▲ 臣

< ∃ >

5900

Э

### Water analogy



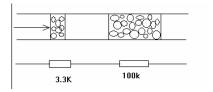
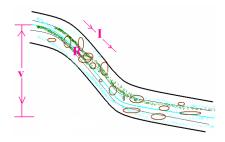

- $\bullet \ \text{voltage} \to \text{pressure}$
- $\bullet~$  electric current  $\rightarrow$  water current
- $\bullet$  wires  $\rightarrow$  large smooth pipes carrying water current

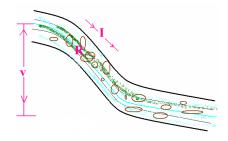
Image: A matrix and a matrix

-


∃ >

### Water analogy

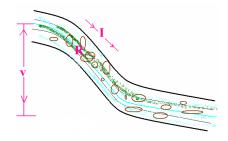



- $\bullet \ \text{voltage} \to \text{pressure}$
- $\bullet \ \text{electric current} \rightarrow \text{water current}$
- $\bullet$  wires  $\rightarrow$  large smooth pipes carrying water current
- resistors  $\rightarrow$  narrow or obstructed pipes which limit current

nar



・ロト ・回ト ・モト ・モト


E

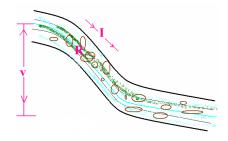


If we want to increase the water flow we can:

<ロト <回ト < 回ト < 回ト

Э




If we want to increase the water flow we can:

• increase the water pressure

(日)

< ∃⇒

nar



If we want to increase the water flow we can:

- increase the water pressure
- use less rocks or widen the pipe

- ▲ 🗇 🕨 🔺 🖻

#### If we want to increase the current in a circuit we can:

・ロト ・部ト ・ヨト ・ヨト

Э

If we want to increase the current in a circuit we can:

• increase the voltage

< ロ > < 同 > < 臣 > < 臣 > -

Э

SQA

If we want to increase the current in a circuit we can:

- increase the voltage
- lower the resistance

<ロト < 同ト < ヨト < ヨト -

3

# Ohm's Law

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回 ト ・注 ト ・注 ト

E

# Ohm's Law

$$V = IR$$

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回 ト ・注 ト ・注 ト

E

### Ohm's Law

$$V = IR$$

• Voltage (or potential) across a resistor is proportional to the current flow through the resistor

< ロ > < 同 > < 回 > < 回 > :

э

## Ohm's Law

$$V = IR$$

- Voltage (or potential) across a resistor is proportional to the current flow through the resistor
- An **ohmic device** is one for which the ratio between voltage and current is constant; i.e. it doesn't depend on the voltage

# Ohm's Law

$$V = IR$$

- Voltage (or potential) across a resistor is proportional to the current flow through the resistor
- An **ohmic device** is one for which the ratio between voltage and current is constant; i.e. it doesn't depend on the voltage
- A **non-ohmic device** is one for which the ratio between voltage and current is *not* constant; i.e. it depends on the voltage

・ロト ・ 一 マ ・ コ ト

Resistors in Circuit Diagrams Resistor Colour Codes

### **Resistors and Measuring Resistance**

Terry Sturtevant Electronics Resistors and Resistance

(日) (同) (三) (三)

э

Resistors in Circuit Diagrams Resistor Colour Codes

### Resistors and Measuring Resistance

Resistance can only reliably be measured when a resistor is *not* part of a circuit.

- 4 同 1 - 4 回 1 - 4 回 1

MQ (P

Resistors in Circuit Diagrams Resistor Colour Codes

### Resistors and Measuring Resistance

Resistance can only reliably be measured when a resistor is *not* part of a circuit.

If this can't be done, then the power to the circuit must be turned off.

- 4 同 1 - 4 回 1 - 4 回 1

Resistors in Circuit Diagrams Resistor Colour Codes

### Resistors and Measuring Resistance

Resistance can only reliably be measured when a resistor is *not* part of a circuit.

If this can't be done, then the power to the circuit must be turned off.

Current and voltage must be measured with power applied to the circuit

- 4 回 ト 4 戸 ト 4 戸 ト

Resistors in Circuit Diagrams Resistor Colour Codes

### Resistors in Circuit Diagrams

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・部 ト ・ヨト ・ヨト

900

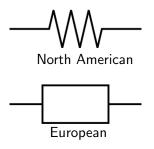
э

Resistors in Circuit Diagrams Resistor Colour Codes

#### **Resistors in Circuit Diagrams**

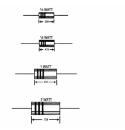
Resistor symbols

Terry Sturtevant Electronics Resistors and Resistance


(日) (同) (三) (三)

э

Resistors in Circuit Diagrams Resistor Colour Codes

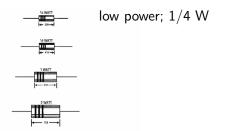

#### **Resistors in Circuit Diagrams**

Resistor symbols



イロト イポト イヨト イヨト

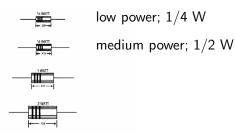
Resistors in Circuit Diagrams Resistor Colour Codes




Terry Sturtevant Electronics Resistors and Resistance

▲ロト ▲圖ト ▲注ト ▲注ト

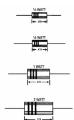
E


Resistors in Circuit Diagrams Resistor Colour Codes



・ロト ・回ト ・モト ・モト

E


Resistors in Circuit Diagrams Resistor Colour Codes



◆ロ > ◆母 > ◆臣 > ◆臣 >

Э

Resistors in Circuit Diagrams Resistor Colour Codes



low power; 1/4 W

medium power; 1/2 W

medium high power; 1 W

イロト イポト イヨト イヨト

3

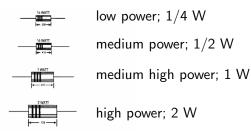
Resistors in Circuit Diagrams Resistor Colour Codes



low power; 1/4 W

medium power; 1/2 W

medium high power; 1 W


(4 同) (4 日) (4 日)

5900

Э

high power; 2 W

Resistors in Circuit Diagrams Resistor Colour Codes



- 4 同 1 - 4 回 1 - 4 回 1

Higher power resistors are bigger so they can dissipate more heat.

Resistors in Circuit Diagrams Resistor Colour Codes

• Always measure resistance by ohmmeter when the power is off but never when the power is on.

<ロト < 同ト < ヨト < ヨト -

1

Resistors in Circuit Diagrams Resistor Colour Codes

- Always measure resistance by ohmmeter when the power is off but never when the power is on.
- Measure resistance based on ohm's law using the voltage across the resistor and the current passing through it.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Resistors in Circuit Diagrams Resistor Colour Codes

- Always measure resistance by ohmmeter when the power is off but never when the power is on.
- Measure resistance based on ohm's law using the voltage across the resistor and the current passing through it.
- The most reliable measurement will be with the resistor removed from any circuit.

<ロト <同ト < 国ト < 国ト

Resistors in Circuit Diagrams Resistor Colour Codes

**Resistor Colour Codes** 

Terry Sturtevant Electronics Resistors and Resistance

< ロ > < 同 > < 臣 > < 臣 > -

Э

Resistors in Circuit Diagrams Resistor Colour Codes

**Resistor Colour Codes** 

Colour codes

Terry Sturtevant Electronics Resistors and Resistance

イロト イポト イヨト イヨト

Э

SQR

Resistors in Circuit Diagrams Resistor Colour Codes

**Resistor Colour Codes** 

Colour codes

• allow resistors to be identified visually

Terry Sturtevant Electronics Resistors and Resistance

<ロト < 同ト < ヨト < ヨト -

э

Resistors in Circuit Diagrams Resistor Colour Codes

**Resistor Colour Codes** 

Colour codes

- allow resistors to be identified visually
- are international

<ロト < 同ト < ヨト < ヨト -

1

Resistors in Circuit Diagrams Resistor Colour Codes

**Colour Codes** 

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・部ト ・ヨト ・ヨト

E

Resistors in Circuit Diagrams Resistor Colour Codes

### **Colour Codes**

• Better (Black - 0)

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・部 ト ・ヨト ・ヨト

Э

Resistors in Circuit Diagrams Resistor Colour Codes

### **Colour Codes**

- Better (Black 0)
- Be (Brown 1)

(日) (同) (三) (三)

nar

э

Resistors in Circuit Diagrams Resistor Colour Codes

### **Colour Codes**

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)

イロト イポト イヨト イヨト

nar

э

Resistors in Circuit Diagrams Resistor Colour Codes

# **Colour Codes**

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)

э

Resistors in Circuit Diagrams Resistor Colour Codes

# **Colour Codes**

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)

< 同 > < 三

MQ (P

Resistors in Circuit Diagrams Resistor Colour Codes

# Colour Codes

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)
- Great (Green 5)

- ● ● ●

**B b** 

Resistors in Circuit Diagrams Resistor Colour Codes

# **Colour Codes**

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)
- Great (Green 5)
- Big (Blue 6)

- ● ● ●

nar

**B b** 

Resistors in Circuit Diagrams Resistor Colour Codes

# Colour Codes

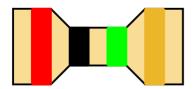
- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)
- Great (Green 5)
- Big (Blue 6)
- Venture (Violet 7)

 3.5

Resistors in Circuit Diagrams Resistor Colour Codes

# Colour Codes

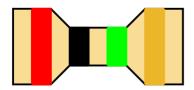
- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)
- Great (Green 5)
- Big (Blue 6)
- Venture (Violet 7)
- Goes (Grey 8)


A.

Resistors in Circuit Diagrams Resistor Colour Codes

# Colour Codes

- Better (Black 0)
- Be (Brown 1)
- Right (Red 2)
- Or (Orange 3)
- Your (Yellow 4)
- Great (Green 5)
- Big (Blue 6)
- Venture (Violet 7)
- Goes (Grey 8)
- Wrong (White 9)

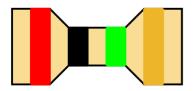

Resistors in Circuit Diagrams Resistor Colour Codes



▲ロト ▲圖ト ▲注ト ▲注ト

E

Resistors in Circuit Diagrams Resistor Colour Codes

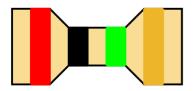



#### • First 2 bands give prefix; eg. 20 (Red Black)

◆ロ > ◆母 > ◆臣 > ◆臣 >

Э

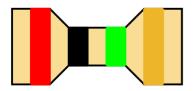
Resistors in Circuit Diagrams Resistor Colour Codes




- First 2 bands give prefix; eg. 20 (Red Black)
- Third band gives multiplier; eg. 5 (Green)

5900

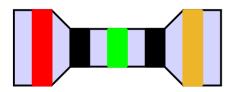
- 4 同 1 - 4 回 1 - 4 回 1


Resistors in Circuit Diagrams Resistor Colour Codes



- First 2 bands give prefix; eg. 20 (Red Black)
- Third band gives multiplier; eg. 5 (Green)
- Fourth band gives tolerance; eg. 5% (Gold)

- 4 同 ト 4 ヨ ト 4 ヨ ト


Resistors in Circuit Diagrams Resistor Colour Codes



- First 2 bands give prefix; eg. 20 (Red Black)
- Third band gives multiplier; eg. 5 (Green)
- Fourth band gives tolerance; eg. 5% (Gold)
- Result  $20\times 10^5\pm$  5%

- 4 同 ト 4 ヨ ト

Resistors in Circuit Diagrams Resistor Colour Codes



<ロ> <部> < 部> < き> < き> <</p>

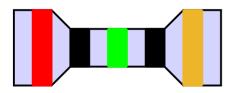
E

Resistors in Circuit Diagrams Resistor Colour Codes



#### • First 3 bands give prefix; eg. 205 (Red Black Green)

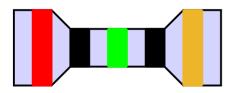
イロト イポト イヨト イヨト


Resistors in Circuit Diagrams Resistor Colour Codes



- First 3 bands give prefix; eg. 205 (Red Black Green)
- Fourth band gives multiplier; eg. 0 (Black)

MQ (P


Resistors in Circuit Diagrams Resistor Colour Codes



- First 3 bands give prefix; eg. 205 (Red Black Green)
- Fourth band gives multiplier; eg. 0 (Black)
- Fifth band gives tolerance; eg. 5% (Gold)

- 4 同 1 - 4 回 1 - 4 回 1

Resistors in Circuit Diagrams Resistor Colour Codes



- First 3 bands give prefix; eg. 205 (Red Black Green)
- Fourth band gives multiplier; eg. 0 (Black)
- Fifth band gives tolerance; eg. 5% (Gold)
- Result 205  $\times\,10^{0}{\pm}$  5%

- 4 同 1 - 4 回 1 - 4 回 1

# Ground

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回 ト ・注 ト ・注 ト

E



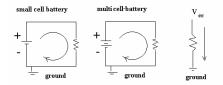
• Voltage measurements are always easier with a common reference point;

・ロト ・部 ト ・ヨト ・ヨト

Э

nar



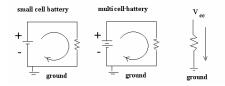

• Voltage measurements are always easier with a common reference point;

(i.e all voltages can be relative to this)

- 4 同 ト - 4 同 ト

MQ (P

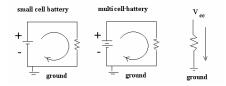
# Circuits




• Battery and power supplies have polarity

◆ロ > ◆母 > ◆臣 > ◆臣 >

Э


# Circuits



 Battery and power supplies have polarity By convention, the direction of current flow in a circuit is from the positive to the negative terminals (although remember this is opposite to the direction of electron flow)

- 4 同 1 - 4 回 1 - 4 回 1

# Circuits



- Battery and power supplies have polarity By convention, the direction of current flow in a circuit is from the positive to the negative terminals (although remember this is opposite to the direction of electron flow)
- Water analogy: water pump→ pumps water→pumps in one direction

#### Power

Terry Sturtevant Electronics Resistors and Resistance

・ロト ・回 ト ・注 ト ・注 ト

E

#### Power

• The power used by any element in a circuit is given by

・ロト ・部 ト ・ヨト ・ヨト

Э

### Power

• The power used by any element in a circuit is given by  $P = I \times V$ 

Э

## Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

э

# Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$

э

# Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$

and so

3

## Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$

and so

 $P = I \times (IR)$ 

э

## Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$
  
and so  
 $P = I \times (IR)$ 

or  $P = I^2 R$ 

イロト イポト イヨト イヨト

э

# Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$

and so

$$P = I \times (IR)$$
  
or  $P = I^2 R$ 

Alternatively

$$P = \frac{V}{R} \times V$$

イロト イポト イヨト イヨト

э

# Power

- The power used by any element in a circuit is given by  $P = I \times V$
- For a resistor, Ohm's law states

$$V = I \times R$$

and so

$$P = I \times (IR)$$
  
or  $P = I^2 R$ 

Alternatively

$$P = \frac{V}{R} \times V$$
  
or  $P = \frac{V^2}{R}$ 

э

Be familiar with all three forms of the power equation.

<ロ> <部> < 部> < き> < き> <</p>

Э

SQR

| Water analogy<br>Ohm's Law<br>Resistors and Measuring Resistance<br>Ground<br>Circuits<br>Power | Current, Resistance, and Voltage   |  |
|-------------------------------------------------------------------------------------------------|------------------------------------|--|
| Resistors and Measuring Resistance<br>Ground<br>Circuits                                        |                                    |  |
| Ground<br>Circuits                                                                              | Ohm's Law                          |  |
| Circuits                                                                                        | Resistors and Measuring Resistance |  |
|                                                                                                 |                                    |  |
| Power                                                                                           | Circuits                           |  |
|                                                                                                 | Power                              |  |

#### Be familiar with all three forms of the power equation.

• 
$$P = I \times V$$

・ロト ・回ト ・ヨト ・ヨト

3

SQR

| Current, Resistance, and Voltage   |  |
|------------------------------------|--|
| Water analogy                      |  |
| Ohm's Law                          |  |
| Resistors and Measuring Resistance |  |
| Ground                             |  |
| Circuits                           |  |
| Power                              |  |
|                                    |  |

Be familiar with all three forms of the power equation.

- $P = I \times V$
- $P = I^2 R$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ

Be familiar with all three forms of the power equation.

- $P = I \times V$
- $P = I^2 R$
- $P = \frac{V^2}{R}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - シスペ



Terry Sturtevant Electronics Resistors and Resistance

▲ロト ▲圖ト ▲注ト ▲注ト

E

# Recap:

• Terminology: resistance *of*, voltage *across* (or voltage *between*), current *through* 

- 4 同 ト - 4 同 ト

э

# Recap:

- Terminology: resistance of, voltage across (or voltage between), current through
- Voltage is always measured by a meter in parallel with the device being measured.

・ 同 ト ・ ヨ ト ・ ヨ ト

# Recap:

- Terminology: resistance of, voltage across (or voltage between), current through
- Voltage is always measured by a meter in parallel with the device being measured.
- Current is always measured by a meter in series with the device being measured.

(4 同) (4 日) (4 日)

# Recap:

- Terminology: resistance of, voltage across (or voltage between), current through
- Voltage is always measured by a meter in parallel with the device being measured.
- Current is always measured by a meter in series with the device being measured.
- Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.

・ロト ・ 一 マ ト ・ 日 ト

# Recap:

- Terminology: resistance of, voltage across (or voltage between), current through
- Voltage is always measured by a meter in parallel with the device being measured.
- Current is always measured by a meter in series with the device being measured.
- Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.
- An ohmic device is one where the ratio of current to voltage is constant.

イロト イポト イヨト イヨト

# Recap:

- Terminology: resistance of, voltage across (or voltage between), current through
- Voltage is always measured by a meter in parallel with the device being measured.
- Current is always measured by a meter in series with the device being measured.
- Resistance is always measured with the power off, or preferably by removing the resistor from the circuit.
- An ohmic device is one where the ratio of current to voltage is constant.

$$P = I \times V = I^2 R = \frac{V^2}{R}$$

イロト イポト イヨト イヨト