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9Chapter 1

Goals for Science Labs

When you take a science course, you are obviously going to learn some sci-
ence. However, in a science course with labs, you are expected to learn how
to think and act like a scientist, which is a different thing. It is like the dif-
ference between being a spectator for a particular sport and actually being
a participant, or like the difference between enjoying cello music and play-
ing the cello. Becoming a professional scientist (like becoming a professional
athlete or a professional musician) will require both learning science and how
to think and act like a scientist. In the lectures for science courses, you will
learn lots of science. In the labs, you should learn how to think and act as a
scientist.

Usually, one thinks of the purpose of a lab as being the demonstration or
testing of laws of some sort, but a lab should accomplish more than that. In
fact, learning how to demonstrate or test theories or laws is more important
(in the lab) than learning the laws themselves.

Learning the theory behind any particular experiment can be done in
a lecture, and so that is not the main focus of the lab. In fact, for some
experiments the “theory” behind them may never be covered in class. Part
of what you should learn through your university career is how to assimilate
knowledge. In other words, you are now going to begin to be expected to
learn things on your own. In the lab, this may amount to reading the lab
manual ahead of time to get an idea of what you will be doing in the lab.
(Later in the course there may be more preparation required.) If you feel
you need more information, you may need to look it up yourself.

As well, what you learn in the lab should be applicable in other areas of
study after you are finished the course. For example, you may never again

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

2 Goals for Science Labs

need to calculate the acceleration due to gravity, however, if you continue in
science you will be sure to do more data analysis of some type.

For these reasons, labs are intended to address three major issues:

1. One has to understand what it means to test or demonstrate a law
before one can actually do so.

2. To actually perform an experiment, a student will often be required to
become familiar with

(a) lab apparatus and equipment,

(b) measurement techniques and efficient methods of gathering data,

(c) methods and tools for data analysis.

3. The results of an experiment are only useful if they can be communi-
cated to others.

For these reasons, the goals of science labs will fall into these general
areas:

• develop understanding of what it means to demonstrate or test laws

• introduce measurement tools and equipment

• introduce measurement techniques

• introduce uncertainty (or error) analysis tools and techniques

• promote organized presentation of results in the format of formal lab
reports.

High school labs tend to focus mainly on the second of these above;
in university courses you should touch on all of them. It should become
apparent that the second one is fairly experiment–dependent, whereas the
others are less so. While the specific theories tested and the format of the
report required may be unique to a particular course, it is important that
you as a scientist develop the skills which allow you to investigate theories
to assess their validity and communicate your results in a clear and concise
manner regardless of your field of study.
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Estimation, Bounding, and
Order of Magnitude
Calculations

11.1 Estimation

Lots of experiments involve quantities which must be estimated. (For in-
stance, before you measure anything, it’s good to be able to estimate the
result you expect, so you can determine what sort of instrument or method
you’ll need to perform the measurement.) Some estimates may be better
than others, but what really matters is that you have a fair idea about how
far off your estimate could be.

11.1.1 Bounding

Bounding a quantity is forming an estimate of how far off it could be; an
upper bound is a bound above the expected value, and a lower bound is a
bound below the expected value.

Picking Realistic Bounds

It’s often easy to come up with reasonable bounds for a quantity by using
similar known quantities which are pretty clearly above or below. For in-
stance, if you are estimating a person’s height, then you can compare with
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4 Estimation, Bounding, and Order of Magnitude Calculations

known heights of family members or friends. If you have to estimate the mass
of an object, you can compare it to objects with which you are familiar.

Range of Possible Values for a Quantity

The range of values for a quantity is the difference between its upper and
lower bounds.

11.1.2 Familiar Comparison

If you’re trying to estimate something, and it’s similar to something you
know, then you can probably make a pretty good estimate by comparing. In
other words, if you can establish an upper and a lower bound, then you can
estimate something in between.

The goal when making estimates is to try and make them “safe” but “useful”;
i.e. you are pretty sure about lower and upper bounds on your estimate, but
the bounds are close enough together to make the estimate usable.

11.1.3 Less Familiar Comparison

Often it’s not easy to make a clear comparison with something very similar,
and so the bounds and thus the estimate have to be a bit more fuzzy.

11.1.4 Logarithmic scale

If several people make estimates, they will no doubt vary. However, they will
probably still be in a common ballpark. This can be more easily observed by
plotting the values on a logarithmic scale, such as the one in Figure 11.1. On
a logarithmic scale, the distance of a number from the left end of the scale
is proportional to the logarithm of the number. Figure 11.2 and Figure 11.3
show some other possibilities. (Logarithmic scales are often identified by the
number of cycles they show.) A cycle is the space between two numbers
which differ by a factor of ten. So, between 1 and 10 is one cycle, between 2
and 20 is one cycle, between 5 and 50 is one cycle, etc.
Note that there is no zero on a logarithmic scale. All numbers are positive.

Where would zero be, if you wanted to show it?
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11.2 Order of Magnitude Calculations 5

1 2 5 10

Figure 11.1: Logarithmic scale

There are many things which we perceive on a logarithmic scale (such as the
volume of music).

1 2 5 10 20 50 100 200 500 1000

Figure 11.2: Three cycle logarithmic scale

0.1 0.2 0.5 1 2 5 10 20 50 100

Figure 11.3: Logarithmic scale with numbers less than one

11.2 Order of Magnitude Calculations

More complex quantities can be estimated by performing calculations with
estimates. For instance, sometimes certain quantities can be measured but
others must be estimated. These calculations are called order of magni-
tude calculations1, since their purpose is to give a result which is within

1or, “back of the envelope calculations”
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6 Estimation, Bounding, and Order of Magnitude Calculations

an order of magnitude (i.e. a factor of ten) of the result of the detailed
calculation.

How big is an order of magnitude on a logarithmic scale?

If two numbers are within the same cycle of a logarithmic scale, they are
within an order of magnitude of each other.

Since an order of magnitude calculation is supposed to be within one order
of magnitude, there should be some number, call it K, between 1 and 10 so
that (value ×K) is an upper bound and (value/K) is a lower bound. The
smaller K is the better. A value of 2 for K means you estimate the correct
value to be within a factor of 2 of your calculation; a value of 1.5 for K
means you estimate your value to be within 50%, (i.e. a factor of 1.5), of
your calculated value, etc.

When is a calculation an Order of Magnitude Calculation?

Any time you have to do a calculation using an estimated quantity, you are
performing an order of magnitude calculation. The order of magnitude
of a quantity refers specifically to the power of ten in its measurement. For
instance, the height of the building would be in metres, while the length
would be in tens of metres. In more general terms, the order of magnitude
of a quantity refers to the cycle of a logarithmic scale to which the quantity
belongs. Thus we could say that the order of magnitude value for the length
of the science building is

• around 100 metres

• between 50 and 200 metres

Both of these are order of magnitude estimates.

When are Order of Magnitude Calculations used?

Order of magnitude calculations are quite commonly done in science before
an experiment is performed. This is so that the range of expected data can
be determined. They are also often done as the data are being collected to
see if the experimental results appear to be in the correct ballpark.
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11.2 Order of Magnitude Calculations 7

An order of magnitude calculation is any kind of calculation which will pro-
duce an answer which should be close to the “real” answer. Any calculation
involving at least one estimated quantity is an order of magnitude calcu-
lation. Generally, the more estimated quantities involved in an order of
magnitude calculation, the wider the distance between the upper and lower
bounds produced.

11.2.1 Uncertainties

A quantity that is bounded can be expressed as an estimate with an uncer-
tainty. (This is a little less cumbersome than giving the estimate, the lower
bound, and the upper bound.) Usually it’s easiest to express uncertainties in
linear (i.e. non-logarithmic) terms, so that an estimate can be given which is
“plus or minus” some amount. In order to do this, it may require adjusting
one of the bounds so that the uncertainty can be the same in both directions.
For instance, the length of the building was estimated to be between 50 and
200 metres. If I think it’s probably around 100 metres I could modify my
estimate of “between 50 and 200 metres” to be “between 50 and 150 metres”
which I could state as “100± 50 metres”.

If you have upper and lower bounds for a quantity, then the uncertainty can
be estimated as one half of the range; i.e.

uncertainty ≈ 1/2(upper bound− lower bound)

(A better determination of the uncertainty will be given in a later exercise.)

Mathematically, the uncertainty in a quantity is usually expressed using the
symbol ∆. So in other words, if mass has the symbol m, then the symbol
∆m should be interpreted as “the uncertainty in m”. In that case you would
write

m±∆m

to mean the mass with its uncertainty. Uncertainty is always given as a

positive value, but it can be added or subtracted from the quantity to which
it belongs.
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8 Estimation, Bounding, and Order of Magnitude Calculations

11.2.2 Comparing Quantities with Uncertainties

Quantities with uncertainties are said to agree if the ranges given by the
uncertainties for each overlap. For instance, if I estimated the length of
the athletic complex as “between 60 and 90 metres” which I could state as
“75±15 metres”, and I estimated the length of the science building as 100±20
metres, then I would say that the lengths of the two building agree since the
ranges overlap. In other words, they may be the same; without more careful
measurement I couldn’t say for sure that they are different.

11.3 Recap

By the end of this exercise, you should understand the following terms:

• estimate

• bound

• range of values for a quantity

• logarithmic scale

• order of magnitude calculation

• uncertainty

• whether quantities agree
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Measurement and Uncertainties

If it’s green and wiggles, it’s biology;
If it stinks, it’s chemistry;
If it doesn’t work, it’s physics.1

The quote above is rather cynical, but depending on what is meant by
“work”, there may be some truth to it. In physics most of the numbers
used are not exact but only approximate. These approximate numbers arise
from two principal sources:

1. uncertainties in individual measurements

2. reproducibility of successive measurements of the same quantities.

The first of these cases will be discussed in the following section, while the
second will be discussed somewhat here, and more later.

12.1 Errors and Uncertainties

When an experiment is performed, every effort is made to ensure that what is
being measured is what is supposed to be measured. Factors which hinder this
are called experimental errors, and the existence of these factors results
in uncertainty in quantities measured.

1The Physics Teacher 11, 191 (1973)
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10 Measurement and Uncertainties

12.2 Single Measurement Uncertainties

When a number is obtained as a measure of length, area, angle, or other
quantity, its reliability depends on the precision2 of the instrument used,
the repeatability of the measurement, the care taken by the experimenter,
and on the subjectivity of the measurement itself.

12.2.1 Expressing Quantities with Uncertainties

Consider a measured length that is found to be between 14.255 cm and
14.265 cm. A number like this should be recorded as 14.260± 0.005 cm,
where the 0.005 cm is the uncertainty 3 in the length.

Note: Digits which are not stated are definitely uncertain. They are, in
fact, unknown, and you can’t get any more uncertain than that! For instance,
it makes no sense to quote a value of 78.3±0.0003kg. Unless the next three
digits after the decimal place are known to be zeroes, then the uncertainty
due to those unknown digits is much bigger than 0.0003kg. If we actually
measured a value of 78.3000kg, then those zeroes should be stated, otherwise
our uncertainty is meaningless. (More will be said about significant figures
later.)

Remember: The uncertainty in a measurement should always be in the last
digit quoted; ie. the least significant digit recorded is the uncertain one.

12.2.2 Random and Systematic Errors

There are two main categories for errors, (ie. sources of uncertainty), which
can occur: systematic and random.

• Systematic errors are those which, if present, will skew the results in
a particular direction, and possibly by a relatively consistent amount.
For instance, If we need to calculate the volume of the inside of a tube,
and we measure the outer dimensions of the tube, then the volume we
calculate will be a little higher than it should be. If we repeated the

2This term will be discussed in detail later.
3The term error is also used for uncertainty, but it suggests the idea of mistakes, and

so it will be avoided where possible, except to describe the experimental factors which
lead to the uncertainty.
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12.2 Single Measurement Uncertainties 11

measurement a few times, we might get slightly different results, but
they would all be high.

• Random errors, on the other hand, cannot be consistently predicted, in
direction or size, outside of perhaps broad limits. For example, if you
are trying to measure the average diameter of a sample of ball bearings,
then if they are randomly chosen there is no reason to assume that the
first one measured will be either above average or below.

One of the important differences between random and systematic errors
is that systematic errors can be corrected for after the fact, if they can be
bounded. (If we measured the thickness of the walls of the tube from the
example above, we could use this to correct the volume.) Random errors can
only be reduced by repeating the number of measurements. (This will be
discussed later.)

It should be noted that a particular measurement may combine both
types of errors; if the two above examples are combined, so that one is trying
to determine the average inner volume of a bunch of tubes by measuring
the outer dimensions, then there would be a systematic error, (due to the
difference between inner and outer dimensions), and a random error, (due to
the variation between the tubes), which would both affect the results.

12.2.3 Recording Precision with a Measurement

When taking measurements, one can usually estimate a reading to the nearest
1/2 of the smallest division marked on the scale. This quantity is known as
the precision measure of the instrument. For a digital device, you can
measure to the least significant digit.

So, for example, if a metre stick has markings every millimetre, then the
precision measure is 0.5 mm, and all measurements should be to 10ths of
millimetres. On the other hand, if a digital stopwatch measures to 1/100th
of a second, the precision measure is 0.01s and measurements should be to
hundredths of seconds.

Determine the precision measure of an instrument before taking any mea-
surements, not after. Since the number of digits you quote will depend on
the precision measure, you cannot make them up after the fact, or assume
them to be zero.
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12 Measurement and Uncertainties

12.2.4 Realistic Uncertainties

Sometimes the precision you can actually achieve in a measurement is less
than what is theoretically possible. In other words, your uncertainty is not
determined by the precision measure of the instrument, but is somewhat
larger because of other factors.

The size of the uncertainty you quote should reflect the real range of possible
values for the quantity measured. You should be prepared to defend any
measurement within the uncertainty you give for it, so do not blithely quote
the precision measure of the instrument as the uncertainty unless you are
convinced that it is appropriate. The precision measure is the best that you
can do with an instrument; the uncertainty you quote should be what you
can realistically do. Your goal as you do the experiment is to try and reduce
other factors as much as possible so that you can get as close to the precision
measure as possible.

There are many possible sources for the uncertainty in a single quan-
tity which all contribute to the total uncertainty. The magnitude of each
uncertainty contribution can vary, and the uncertainty you quote with the
measurement should take all of the sources into account and be realistic. For
instance, suppose you measure the length of a table with a metre stick. The
uncertainty in the length will come from several sources, including:

• the precision measure of the metre stick

• the unevenness of the ends of the table

• the unevenness of the top of the table (or the side, if you place the
metre stick alongside the table to measure)

• the temperature of the room (a metal metre stick will expand or con-
tract)

• the humidity of the room (a wooden table and/or metre stick will swell
or shrink)

It is possible to come up with many other sources of uncertainty, but it should
be clear that this does not make the uncertainty you use arbitrarily large.
In this example, you’d probably ultimately believe your measurement to be
within a cm or so, no matter what, and so that is the uncertainty you should
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12.2 Single Measurement Uncertainties 13

use. (On the other hand, your uncertainty should not be unrealistically
small. Even if the metre stick has a precision measure of say, one millimetre,
your uncertainty is obviously bigger than that if the ends of the table have
variations of 3 or 4 millimetres from one side of the table to the other.)

Usually if the uncertainty in a quantity is bigger than the precision measure,
it will be due mainly to a single factor, or perhaps a couple of factors. It is
rare that there will be several errors equally contributing to the uncertainty
in a single quantity.

Repeatability of Measurements

Whether we repeat a measurement or not, its realistic uncertainty should
reflect how close we would be able to be if we attempted to repeat the exper-
iment. This reflects many things, including the strictness of our definition
of what we are measuring. A later section of the lab manual, Chapter 13,
“Repeated Independent Measurement Uncertainties”, will discuss how to cal-
culate the uncertainty if we are actually able to repeat a measurement several
times.

Here’s a guideline for determining the size of the “realistic uncertainty” in a
quantity: If someone was to try and repeat your measurement, with only the
instructions you have written about how the measurement was made, how
big a discrepancy could they reasonably have from the value you got?

Subjectivity

Suppose you are measuring the distance between two dots on a page with
a ruler. If the ruler has a precision measure of 0.5mm, but the dots are
non-uniform “blobs” which are several millimetres wide, then your effective
uncertainty is going to be perhaps a few millimeters. The subjectivity in
determining the centre of the blobs is responsible for this. When you find
yourself in this situation, you should note why you must quote a larger un-
certainty than might be expected, and how you have determined its value.
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14 Measurement and Uncertainties

12.2.5 Zero Error

Some measuring instruments have a certain zero error associated with them.
This is the actual reading of the instrument when the expected value would
be zero. For instance, if a spring scale reads 5g with no weight hanging on
it, then it has a zero error of 5g. Any measurement made will thus be 5g too
high, and so 5g must be subtracted from any measurements. (If the zero error
was minus 5g, then 5g would have to be added to every subsequent measure-
ment. Always be sure to check and record the zero error of an instrument
with its uncertainty. (Since the zero error is itself a measurement, then it has
an uncertainty just like any other measurement.) Subsequent measurements
with that instrument should be corrected by adding or subtracting the zero
error as appropriate.

With some very sensitive digital instruments, there may be another factor:
if the “zero” value of the scale fluctuates over time, then the fluctuation
should be taken into account.

12.3 Precision and Accuracy

Two concepts which arise in the discussion of experimental errors are preci-
sion and accuracy which, in general, are not the same thing.

12.3.1 Precision

Precision refers to the number of significant digits and/or decimal places
that can be reliably determined with a given instrument or technique. The
precision of a quantity is revealed by its uncertainty.
Precision (or uncertainty) can be expressed as either absolute or relative. In
the first case, it will have the same units as the quantity itself; in the latter,
it will be given as a proportion or a percentage of the quantity.

Uncertainties may be expressed in the first manner, ( i.e. having units),
are called absolute uncertainties. Uncertainties be expressed as a percent-
age of a quantity are then called percentage uncertainties.

For example, the measurement of the diameter of two different cylinders
with a meter stick may yield the following results:

d1 = 0.10±0.05cm

d2 = 10.00±0.05cm
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12.3 Precision and Accuracy 15

Clearly, both measurements have the same absolute precision of 0.05 cm, i.e.,
the diameters can be determined reliably to within 0.5 millimeters, but the
relative precisions are quite different. For d1, the relative precision is

0.05

0.10
× 100% = 50.0%

whereas for d2 it is
0.05

10.00
× 100% = 0.5%

so we could express these two quantities as

d1 = 0.10± 50.0%

d2 = 10.00± 0.5%

An error which amounts to a half a percent in the overall diameter is probably
not worth quibbling about, but a fifty percent error is highly significant.
Consequently, we would say that the measurement of d2 is more precise than
the measurement of d1. The relative precision tells us immediately that
there is something wrong with the first measurement, namely, we are using
the wrong instrument. Something more precise is needed, like a micrometer
or vernier calipers, where the precision may be more like ±0.0005 cm.

When comparing quantities, the more precise value is the one with the
smaller uncertainty.

12.3.2 Accuracy

Accuracy refers to how close the measured value is to the ‘true’ or correct
value. Thus, if a steel bar has been carefully machined so that its length
is 10.0000 ± 0.0005 cm, and you determine its length to be 11.00 ± 0.05
cm, your measurement is precise, but inaccurate. On the other hand, if
your measurement is 10.0 ± 0.5 cm, it is accurate, but imprecise, and a
measurement of the length which yields a value of 10.001 ± 0.005 cm can
be considered to be accurate and precise. Errors in precision and errors in
accuracy arise from very different causes, as we shall discuss in the next
section.

If you do not know what value to “expect” for a quantity, then you
cannot determine the accuracy of your result. This will sometimes be the
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16 Measurement and Uncertainties

case. However, even in these cases, you will often still be able to use common
sense to determine whether a value is plausible. For instance, if you measured
the mass of a marble to be 21kg, you should realize that is unreasonable. If
you get a value which is unreasonable, you should try and figure out why.
(In this case, it may be that the mass should be 21 grams ; incorrect units
are a common source of odd results.)

When comparing quantities, the more accurate value is the one which is
closer to the “correct” or expected value.

Systematic errors affect the accuracy of a measurement or result, while ran-
dom errors affect the precision of a measurement or result.

12.4 Significant Figures

The approximate number 14.26 is said to be correct to 4 figures, or to have
4 figure accuracy. Those figures that are known with reasonable accuracy
are called significant figures. It is permissible to retain only one estimated
figure in a result and this figure is also considered significant.

If three numbers are measured to be 327, 4.02, and 0.00268 respectively,
they are each said to have three significant digits. Thus, in counting signifi-
cant figures, the decimal place is disregarded. Zeros at the end of a number
are significant unless they are merely place holders. If, for example, a mass
is found to be 3.20 grams, the zero is significant. On the other hand, when
the distance to the sun is given to be 150,000,000 km, this is considered
to have only 2 significant digits. Note that there is some ambiguity about
the significance of the trailing zeros in this case. This can be avoided by
the use of scientific notation, which for the above measurement would be
1.5× 108 km. (Note that in this case, zeros are never place holders, and so,
if shown, are always significant.) The following rules tell us which digits are
significant in an approximate number:

1. all digits other than zero are significant

2. zeros between non–zero digits are significant

3. leading zeros in a number are not significant

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

12.4 Significant Figures 17

4. trailing zeros in a number may or may not be significant. Use the
standard form when appropriate to avoid any confusion of this type.

12.4.1 Significant Figures in Numbers with Uncertain-
ties

When quantities have uncertainties, they should be written so that the un-
certainty is given to one significant digit, and the the least significant digit of
the quantity is the uncertain one. Thus, if a mass is measured to be 152.1g
with an uncertainty of 3.5g, then the quantity should be written as

152± 4g

(Note the “2” is the uncertain digit.)

When using scientific notation, you should separate the power of ten from
both the quantity and its uncertainty to make it easier to see that this rule
has been followed. This is known as the standard form. Use the standard
form when the quantities you are quoting have placeholder zeroes. When
they don’t, the standard form is unnecessary and a bit cumbersome. If
you are using the standard form correctly, it should allow you to present
results with uncertainties more concisely. Any time that it would be shorter
to present a result without using the standard form, it should not be used.

For instance, if the speed of light was measured to be 2.94×108m/s with
an uncertainty of 6.3× 106m/s, then it should be written as

c = (2.94± 0.06)× 108m/s

Note that this makes the relative uncertainty easier to determine.

12.4.2 Rounding Off Numbers

Often it is necessary to round off numbers. The length 14.26 feet if correct
to three figures is 14.3 feet, and if correct to two figures is 14 feet. Following
is a list of rules used when rounding off numbers:

1. when the digit immediately to the right of the last digit to be retained
is more than 5, the last digit retained is increased by one.
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18 Measurement and Uncertainties

2. when the digit immediately to the right of the last digit to be retained
is less than 5, the last digit retained is unchanged.

3. when the digit immediately to the right of the last digit to be retained
is 5, the last digit to be retained remains unchanged if even and is
increased by one if odd.

This last rule exists so that, for instance, 12.345 rounds to 12.34, but 12.355
rounds to 12.36. If either of these were rounded again, they would round
correctly. However if the first had been rounded to 12.35, then rounding
again would make it 12.4, which is incorrect.

12.5 How to Write Uncertainties

There are different ways of expressing the same uncertainties; which method
is used depends on the circumstances. A couple of these will be described
below.

12.5.1 Absolute Uncertainty

An absolute uncertainty is expressed in the same units as the quantity.
Note that uncertainties are always expressed as positive quantities. For ex-
ample, in the quantity

123± 4cm

“4” is the uncertainty (not “±4”), and both the 123 and the 4 are in cm.

12.5.2 Percentage Uncertainty

An uncertainty can be written as a percentage of a number, so in the above
example we could write

123± 4 = 123±
(

4

123

)
× 100% = 123± 3%

Generally percentage uncertainties are not expressed to more than one or
two significant figures.
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12.6 Bounds on Uncertainty 19

12.5.3 Relative Uncertainty

Although uncertainties are not actually presented this way, they are often
used this way in calculations, as you will see later. The relative uncertainty is
simply the ratio of the uncertainty to the quantity, or the percent uncertainty
divided by 100. So again, in the example above, the relative uncertainty is

4

123

12.6 Bounds on Uncertainty

Occasionally you will have to measure a quantity for which the uncertainty
is unknown. In these cases, the uncertainty can be bounded by varying
the quantity of interest by a small amount and observing the resulting effect.
The uncertainty is the amount by which the quantity of interest can be varied
with no measurable effect. This is a case where trying to induce more error
in an experiment may be desirable! Suppose that you have a circuit, and you
think that the resistance in the wires of the circuit may be affecting your
results. You can test this hypothesis by increasing the lengths of the wires
in your circuit; if your results do not get worse, then there is no evidence
that the original length of wires caused a problem.
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Repeated Independent
Measurement Uncertainties

If a quantity is measured several times, it is usually desirable to end up with
one characteristic value for the quantity. (Quoting all the data may be more
complete, but will not result in the kind of general conclusion that is desired.)
The uncertainty in a quantity measured several times is the bigger of the
uncertainty in the individual measurements and the uncertainty related to
the reproducibility of the measurements. Most of this write-up deals with
how to determine the latter quantity.

Sometimes an attempt at a single measurement will give multiple values.
For instance, a very sensitive digital balance may produce a reading which
fluctuates over time. Recording several values over a period of time will
produce a more useful result than simply picking one at random. There are
3 common values which are extracted from data distributions which may be
considered “characteristic” in certain circumstances. They are the mean,
the median, and the mode. The mean is simply the average, with which
you are familiar. The median is the “middle” value; the value which has
an equal number of measurements above and below 1. (StatsCan often reports
the median income, rather than the average. The average wealth of people in
Redmond, Washington, where Bill Gates lives, is huge, but it doesn’t affect
most people.) The mode is the most commonly occurring value. (If there
is a continuous range of data values, then the data may be grouped into

1If there are an even number of points, the median is the average of the two central
ones.

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

22 Repeated Independent Measurement Uncertainties

smaller “bins” so that a mode of the bins may be defined. Tax brackets for
Revenue Canada are an example of these bins.) Depending on the reason for
the experiment, the choice of a characteristic answer may change.

In a Gaussian, or normal distribution, the above decision is simplified by
the fact that the mean, median, and mode all have the same value. Thus, if
the data are expected to fit such a distribution, then an average will probably
be a good choice as a quantity characteristic of all of the measurements.
The uncertainty in this characteristic number will reflect the distribution of
the data. Since the variations in the observations are governed by chance,
one may apply the laws of statistics to them and arrive at certain definite
conclusions about the magnitude of the uncertainties. No attempt will be
made to derive these laws but the ones we need will simply be stated in the
following sections.

13.1 Arithmetic Mean (Average)

Note: (In the following sections, each measurement xi can be assumed to have
an uncertainty ∆xi due to measurement uncertainty. How this contributes
to the uncertainty in the average, etc. will be explained later.)

The arithmetic mean (or average) represents the best value obtainable
from a series of observations from “normally” distributed data.

Arithmetic mean = x =
Pn

i=1 xi

n

= x1+x2+···+xn

n

13.2 Deviation

The difference between an observation and the average is called the devia-
tion and is defined as

Deviation = δxi = |xi − x|

13.2.1 Average Deviation

The average deviation, which is a measure of the uncertainty in the ex-
periment due to reproducibility, is given by

Average Deviation = δ =

∑n
i=1 |xi − x|

n

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

13.3 Standard Deviation of the Mean 23

13.2.2 Standard Deviation

The standard deviation of a number of measurements is a more common
measurement of the uncertainty in an experiment due to reproducibility than
the average deviation. The standard deviation is given by

Standard Deviation = σ =

√∑n
i=1(xi − x)2

n− 1

=
1√

n− 1

√√√√ n∑
i=1

x2
i −

(
∑n

i=1 xi)2

n

(One of the main advantages of using the standard deviation instead of the
average deviation is that it can be expressed in the second form above which
can be simply re–evaluated each time a new observation is made.) With ran-
dom variations in the measurements, about 2/3 of the measurements should
fall within the region given by x ± σ, and about 95% of the measurements
should fall within the region given by x±2σ. (If this is not the case, then ei-
ther uncertainties were not random or not enough measurements were taken
to make this statistically valid.)

This occurs because the value calculated for x, called the sample mean,
may not be very close to the “actual” population mean, µ, which one would
get by taking an infinite number of measurements. (For example, if you take
2 measurements of a quantity and get values of 1 and 2 respectively, should
you guess that the “actual” value is 1, 1.5, 2, or something else?) Because
of this, there is an uncertainty in the calculated mean due to the random
variation in the data values. This uncertainty will be discussed further in
the following section.

Rule of thumb: For normally distributed data, an order of magnitude ap-
proximation for the standard deviation is 1/4 the range of the data. (In other
words, take the difference between the maximum and minimum values and
divide by 4 to get an approximate value for the standard deviation.)

13.3 Standard Deviation of the Mean

(In some texts this quantity is called the “standard error of the mean”.)
Once a number of measurements have been taken, and a mean calculated,
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24 Repeated Independent Measurement Uncertainties

one may calculate the uncertainty in the calculated mean due to the scatter
of the data points, (ie. reproducibility). Or to be more precise, one can
calculate an interval around the calculated mean, x, in which the population
mean, µ, can be reasonably assumed to be found. This region is given by the
standard deviation of the mean,

Standard deviation of the mean = α =
σ√
n

and one can give the value of the measured quantity as x ± α. (In other
words, µ should fall within the range of x± α.)

If possible, when doing an experiment, enough measurements of a quantity
should be taken so that the uncertainty in the measurement due to instru-
mental precision is greater than or equal to α. This is so that the random
variations in data values at some point become less significant than the in-
strument precision. (In practice this may require a number of data values
to be taken which is simply not reasonable, but sometimes this condition will
not be too difficult to achieve.)

In any case, the uncertainty used in subsequent calculations should be the
greater of the uncertainty of the individual measurements and α.

In mathematical terms2,

∆x = max (α, p.m.)

since p.m., the precision measure of the instrument, would be the uncertainty
in the average due to the measurement uncertainties alone.

(Note that you need not calculate uncertainties when calculating the av-
erage deviation, the standard deviation, and the standard deviation of the
mean, since these quantities are used to determine the uncertainty in the
data due to random variations.)

2 This is only strictly true if the precision measure is the uncertainty in each of the
individual measurements. It is possible that there would be different uncertainties in
different measurements, in which case the result should be written ∆x = max

(
α, (∆xi)

)
,

where ∆xi is the uncertainty in measurement i.
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13.4 Preferred Number of Repetitions 25

i xi x2
i

1 1.1 1.21
2 1.4 1.96
3 1.3 1.69
4 1.2 1.44

n
∑

xi

∑
x2

i

4 5.0 6.3

Table 13.1: Sample Data

13.4 Preferred Number of Repetitions

Since the the uncertainty of the average is the greater of the uncertainty of
the individual measurements and α, and α decreases with each additional
measurement, then there is a point at which alpha will equal the precision
measure. In this case, the experiment is “optimized” in the sense that in
order to improve it (ie. reduce the uncertainty in the result), one would
have to get a more precise instrument and take more measurements. This
situation occurs when

α = p.m.

so if we set

p.m. =
σ√
n

and solve for n, then the result will be the optimal number of repetitions.
(Keep in mind that σ does not change much after a few measurements, so it
can be calculated and used in this equation.)

13.5 Sample Calculations

Following is an example of how the mean, standard deviation, and standard
deviation of the mean are calculated. (The xi values represent a set of data;
x1 is the first value, x2 is the second, etc.)

Therefore

x =

∑n
i=1 xi

n
=

5.0

4
= 1.25
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26 Repeated Independent Measurement Uncertainties

and so

σ =

√∑n
i=1(xi − x)2

n− 1

=
1√

n− 1

√√√√ n∑
i=1

x2
i −

(
∑n

i=1 xi)2

n

=
1√

4− 1

√
(6.3)− (5.0)2

4
= 0.129099

thus

α =
σ√
n

=
0.129099√

4
= 0.06455

The uncertainty which should be quoted with the average above will be
the bigger of the uncertainties in the individual measurements and the stan-
dard deviation of the mean. So, if the above xi values all had an uncertainty
of 0.05, then since 0.05 is less than α, we would write

x = 1.25± 0.06

If, on the other hand, the xi had an uncertainty of 0.07 units, then we would
write

x = 1.25± 0.07

since 0.07 is greater than α.
Note that in both of these cases, the uncertainties have been rounded to

one significant digit, and the average is rounded so that its last significant
digit is the uncertain one, as required.

13.6 Simple Method; The Method of Quar-

tiles

There is a way to get values very close to those given by calculating the
mean and standard deviation of the mean with very little calculation. (This
will be true if the data have a Gaussian3 distribution.) The method involves

3or “normal”
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13.7 Recap 27

dividing the data into quartiles. The first quartile is the value which is above
1/4 of the data values; the second quartile is the value which is above 1/2
of the data values4 and so on. The second quartile gives a good estimate
for the average, and the third quartile minus the first quartile gives a good
estimate5 for the standard deviation. Thus,

x± α ≈ Q2 ±
(Q3 −Q1)√

n

If you use a number of data values which is a perfect square, such as 16, then
the only calculation is one division!

13.7 Recap

When dealing with a set of numbers, calculate

• the average, x̄

• the standard deviation, σ

• the standard deviation of the mean, α

• the uncertainty in the average, which is the bigger of the precision
measure of the instrument and the the standard deviation of the mean

The range of the set of numbers (biggest minus smallest) is about four times
the standard deviation.

4which is also the median
5Actually the inter-quartile distance or IQR ≈ 1.35 σ for normally distributed data.
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28 Repeated Independent Measurement Uncertainties
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9Chapter 14

Repeated Dependent
Measurements: Constant
Intervals

14.1 The Method of Differences

Occasionally, one performs an experiment which produces more data than is
absolutely necessary. (This is especially true when using electronic equipment
which automates data collection.) For example, when doing an experiment
measuring the position of a cart on a track at fixed time intervals you may
produce several data points as shown in Figure 14.1.

Consider the situation in Figure 14.1. The first 3 cases all have 6 dots
spaced 1 second apart, for a total time interval of 5 seconds. The fourth
case has only two dots, but they are spaced 5 seconds apart, so again the
total time interval is 5 seconds. If we were to calculate the velocity using
endpoints alone, all four sets of data would give the same answer. The
important question for us is “Which data set do you trust the most?”, or in
more scientific terms, “Which data set has the smallest uncertainty?”

1. Consider cases 1 and 2. The centres of the corresponding dots are at
exactly the same times, so each sub-interval is identical. However, the
dots in case 1 are much larger. Because of the dot size, we would prefer
the data in case 2, or in other words, case 2 has the smaller uncertainty
due to the smaller dots.
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30 Repeated Dependent Measurements: Constant Intervals

Time interval = 1s

Time interval = 1s

Time interval = 5s

Time interval = 1s

0 5 10 15

Figure 14.1: Different Possibilities
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14.1 The Method of Differences 31

x1 x2 x3 x4 x5 x6

x6 − x1

Figure 14.2: Position Measurements for Constant Velocity

2. Consider cases 2 and 3. The dot sizes are the same for both cases.
What about variations? Since case 3 has only 1 sub-interval, we have
no idea how consistent that measurement would be with a subsequent
one. Because of this, case 2 would be preferable because it gives us
uncertainties due to both factors (dot size and interval variations),
whereas case 3 only addresses one of them.

3. Consider cases 2 and 4. The dots are the same size in both of these
cases, however, the widths of the sub-intervals in case 4 vary much more
than those of case 2. (In fact, it is clear in case 4 that the object is
decelerating.) In this situation, we would say that case 2 has a smaller
uncertainty than case 4 due to the variations in the dot spacings.

Question: If your choice was only between cases 1 and 4, how would your
uncertainties make it possible for you to choose which is better?

If velocity is approximately constant, we could calculate it with just 2
points, even though we have many more. Making use of the “extra” data is
what this section is all about. If you need to have at least two data points
to perform a calculation, then the data are “dependent”.

If the points are approximately equally spaced, (i.e. velocity is approxi-
mately constant), the velocity can be calculated as follows. (If the velocity
is not approximately constant, the analysis is more complex and will be
discussed later.)

Suppose, for instance, you have 6 marks, which are measured to give
positions x1 to x6 at times t1 to t6, as in Figure 14.2.
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32 Repeated Dependent Measurements: Constant Intervals

14.1.1 Option I: End Points

The simplest way we can calculate v is to use just two points. Clearly, the
uncertainty in v will be minimized if we use points that are as far apart as
possible to calculate the interval width; i.e.

v =
x6 − x1

t6 − t1
(14.1)

The uncertainty in the result due to the precision measure of the measuring
instrument can be calculated as usual. Now, is there any way we can use all
of the data to produce better results?

14.1.2 Option II (Better):Method of Differences

While the data can be considered as 1 interval of width 5, we can use the
points we ignored and see the data as 3 independent intervals of width 3, as
in Figure 14.3.

Suppose we calculate x as

width1 = x6 − x3 (14.2)

width2 = x5 − x2 (14.3)

width3 = x4 − x1 (14.4)

and then

x =
width1 + width2 + width3

3
(14.5)

(the average of the 3 widths) and similar for t. The velocity will be given by

v =
x

t
(14.6)

In this way, we turn 1 interval of 5 into 3 independent intervals of 3! Now
these 3 independent measurements can be treated as usual, with standard
deviations, etc. The value in this is that now all of the data are used, and
variations in the interval spacing will affect the uncertainty by increasing the
standard deviation of the mean. (Note each measurement is used once and
only once, so all have equal weight.)
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14.1 The Method of Differences 33

x1 x2 x3 x4 x5 x6

x6 − x3

x1 x2 x3 x4 x5 x6

x5 − x2

x1 x2 x3 x4 x5 x6

x4 − x1

Figure 14.3: Independent Sub-intervals
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34 Repeated Dependent Measurements: Constant Intervals

The uncertainty in your result will be the bigger of the uncertainty from the
precision measure and the standard deviation of the mean.(In this example,
the uncertainty due to the precision measure would be 2∆x. If this is unclear,
ask.)

Whenever you have data like this, you should use this method.

Method of Differences with an Odd Number of Points

To see how this method works with an odd number of points, see Figure 14.4.
In this case we can ignore one value and use the remaining (even) number as
before. Note that to keep all of the intervals the same, there are only three
choices of which point to drop; the first, the last, or the middle.

14.1.3 Non-Option III :Average All of the Sub-Intervals

You may be wondering why we don’t average all of the sub-intervals; in other
words, why not determine

v =
xi+1 − xi

ti+1 − ti
(14.7)

for i = 1, 2, . . . 6. If you expand this out, you get

v =
x6−x5

t6−t5
+ x5−x4

t5−t4
· · · x3−x2

t3−t2
+ x2−x1

t2−t1

5
(14.8)

Since all of the time intervals are the same, this becomes

v =
(x6 − x5) + (x5 − x4) · · · (x3 − x2) + (x2 − x1)

5∆t
(14.9)

Removing the brackets gives

v =
x6 −��x5 +��x5 −ZZx4 · · ·ZZx3 −��x2 +��x2 − x1

5∆t
(14.10)

Notice we have both a ‘+’ and a ‘-’ term for each of x2 to x5, so that we are
left with

v =
x6 − x1

5∆t
(14.11)
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14.1 The Method of Differences 35

x1 x2 x3 x4 x5 x6 x7

x5 − x1

x1 x2 x3 x4 x5 x6 x7

x5 − x2

x1 x2 x3 x4 x5 x6 x7

x4 − x1

Figure 14.4: Working with an odd number of points
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36 Repeated Dependent Measurements: Constant Intervals

which is exactly what we get by using the endpoints alone! This is why, with
equal time intervals1, there is no point to averaging all of the intervals.

14.2 Recap

When dealing with a set of dependent values, do the following:

• Divide the set in half.

• Take differences by subtracting the first value in one half from the first
value in the other; the second value in one half from the second in the
other, etc.

• Treat the differences like independent measurements. (i.e. calculate
the average, standard deviation, etc. of the differences.)

(If you have an odd number of values, omit either the first, last, or middle
value.)

1Note that if the time intervals are not the same, then the simplification from Equa-
tion 14.8 to Equation 14.9 cannot happen, so the intermediate points do not automatically
disappear.
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Repeated Dependent
Measurements: Varying
Intervals

15.1 Introduction

Previously, it was discussed how to deal with repeated dependent measure-
ments where the intervals varied randomly. The case which will now be
addressed is the one in which the intervals are changing monotonically, ei-
ther increasing or decreasing. Without knowing or suspecting some pattern
to the variations, one cannot easily determine how to interpret the data.
However, if the relationship between the spacings is known, then analysis
can be done. The following discussion deals with one special case.

If a cart on a track travels at a speed which is roughly constant, the
velocity of the cart can be best calculated using the method of differences,
as discussed previously. If, however, the cart is accelerating or decelerating,
then the procedure for interpreting the results is a little more complex. If
the acceleration (or deceleration) is expected to be non-uniform, then it is
necessary to have some idea of the nature of the relationship expected before
proceeding. The simplest case of uniform acceleration (or deceleration) can
be dealt with as follows.
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38 Repeated Dependent Measurements: Varying Intervals

Start

End

Finish

End

654321

Figure 15.1: Spark Tape for Varying Velocity

15.2 Special Case: Constant Acceleration

(Note that the example speaks of a spark tape with distance marks at equal
time intervals, but clearly the analysis is similar if instead we have fixed
distance measurements at varying time intervals.)

Consider the spark tape shown in Figure 15.1.
A body traveling with constant acceleration obeys the equations of motion

which follow:

v = v0 + at (15.1)

x = x0 + vt (15.2)

x = x0 + v0t +
1

2
at2 (15.3)

where v is the average velocity. If we choose to start our measurements at
one of the marked points on the tape, (i.e. x0 = 0), then Equation 15.3 above
reduces to

x = v0t +
1

2
at2 (15.4)

Dividing both sides of this equation by t gives

x

t
= v0 +

1

2
at (15.5)

Equation 15.5 is the equation of a straight line. Thus, if we calculate x/t for
each data point and plot x/t vs. t for the data, we should get a straight line
with a slope of 1

2
a and a y intercept of v0. (Note for the first point, since x

and t are both zero, then x/t is undefined so we can’t use it.) The velocity at
any point is then given by Equation 15.2. (Whether or not the acceleration
actually was constant will be shown by whether or not the graph was linear.)
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15.3 General Case: Non-Uniform Acceleration 39

One of the nice features of using this approach is that it doesn’t matter
whether the object was at rest initially. Often, this can’t be controlled very
well and so it is nice to be able to get equally accurate results either way. As
previously stated, the first point (i.e. the starting point) will not give a data
point since x = 0 and t = 0 and thus x/t is undefined, and so can’t be used
for graphing or for calculations. (The advantage gained by having a linear
graph outweighs the loss of one data point.)

15.3 General Case: Non-Uniform Accelera-

tion

As stated above, in the general case, to summarize the results it will be
necessary to fit the data to some mathematical relationship, but that is
beyond the scope of this course.

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9
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Measuring Instruments and
Uncertanties

16.1 Theory

Doing experiments in science involves measuring. In order to take useful
measurements, a few concepts need to be understood:

16.1.1 Range

Any instrument has a limit to the values it can measure. For instance, a
metre stick can only measure lengths up to a metre. When you choose an
instrument to measure something, you are probably making an estimate in
your head of how big the things is you’re going to measure to be sure that
the instrument you use will work.

Examples of range

What is the largest measurement you can make with each of these?

1. Vernier caliper (approximately)

2. micrometer caliper (approximately)

3. spring scale A

4. spring scale B
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42 Measuring Instruments and Uncertanties

Why have multiple instruments for one quantity?

Since not all instruments measuring one quantity, (such as length), have the
same range, why wouldn’t you just use the instrument with the biggest range
for all measurements? (e.g. Why wouldn’t you just use a meter stick for all
length measurements?)

16.1.2 Precision

If you want to compare two objects to see if they are the same in some way,
such as whether two marbles have the same mass, you need to measure them
with some instrument. The precision of an instrument refers to how close
two measurements can be and still be distinguished. Usually instruments
with a large range don’t have as much precision, (or, “are not as precise”),
as instruments with a small range.

Digital instruments

If you have a digital clock, which shows hours and minutes, how close can
two times be and still be different? Obviously, if they are at least 1 minute
apart, then they are different. What about a stopwatch that measures to
hundredths of seconds? Times that are at least one hundredth of a second
apart will be distinct. Since these times are much closer than the times which
the digital clock can distinguish, we say the stopwatch is more precise than
the clock.

We call this smallest difference between two measurements which can be
distinguished the precision measure of an instrument. A smaller precision
measure indicates a more precise instrument.

Scales and analog instruments

Many measuring instruments are not digital; they are analog. This means
that rather than giving an unambiguous disctinct value, they show a con-
tinuous range of possible values. Consider the scale reading in Figure 16.1
below:

First of all, the left edge of the object is lined up with the zero of the
scale, so we should be able to read the length of the object from the scale
at the right edge of the object. It’s pretty clear that that the object ends
between the ‘7’ and the ‘8’ of the scale. Now take a look at another object
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16.1 Theory 43

0 5 10

Figure 16.1: An analog scale

measured with the same scale in Figure 16.2. This object also ends between

0 5 10

Figure 16.2: Different measurement?

the ‘7’ and the ‘8’ of the scale. The question is: Can these two objects be
distinguished?

The first object is closer to the ‘8’ than the ‘7’, while the second object
is closer to the ‘7’ than the ‘8’, so we might say they can possibly be distin-
guished. What scientists usually do in this situation is to estimate one more
digit than they know for sure. So, for the first one, I might estimate it to be
7.7 units. (Someone else might estimate it to be 7.8 units, but that’s fine.)
The second one I estimate to be 7.2 units. (Someone else might estimate it to
be 7.3 units, but that’s also fine.) The precision measure of a scale like this
would be said to be one half of the smallest spacing on the scale. Since this
scale has spacings 1 unit apart, the precision measure would be 0.5 units.
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44 Measuring Instruments and Uncertanties

Examples of analog instrument precision measure

In order to use instruments, you need to understand how to operate and read
them. Here are instructions on how to use two important ones.

Micrometer Caliper A micrometer caliper is shown in Fig. 16.3, and
a reading from a micrometer scale is shown in Fig. 16.4. As with other
non-digital instruments, you must estimate one more digit than you know.
The uncertainty is one half of the smallest division, as it would be for any
non-digital instrument.1

Always use the ratchet to close a micrometer caliper; never use the thimble
because that would allow you to apply enough force to damage the caliper.

�
��

thimble

?

spindle

?

anvil

6

barrel

@
@I

frame

�
�	

clamp

�
�
��

ratchet

Figure 16.3: Micrometer Caliper

Figure 16.4 gives an example of a reading from a micrometer scale.
While the micrometer scale is linear, it is a little different than a regu-

lar scale because there are actually two distinct scales which must be read
to determine the measurement. There is a horizontal scale on the barrel,
which counts rotations of the thimble, and a vertical scale on the thimble,
which gives the fractional part of the reading. (Usually the numbers on the
thibmle will go up to 50, meaning that each complete rotation of the thimble
represents a change of 0.5 of the units of the barrel scale.)

1The reason a micrometer is so named is that when the main scale is in millimetres,
the digit estimated will be in thousandths of millimetres; ie. in “micrometres”.
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16.1 Theory 45

?

Thimble cuts scale between 12 and 12.5.

� Centreline cuts between 42 and 43.
Estimate one more digit; say “7”.

40

45105

The final reading is 12.427 ± 0.005 mm.

Figure 16.4: Reading a Micrometer Scale

Vernier Caliper A Vernier caliper is shown in Fig. 16.5. A reading from
a vernier scale is shown in Fig. 16.6. The example shown is fairly simple. It is
possible to have vernier scales which are more complicated, but the principle
of operation is the same. The important thing to understand is the purpose
of the two scales, and how to tell which is which.

Remember that the precision measure is the smallest difference between two
measurements which can be distinguished, so that if the difference between
two measurements is less than the precision measure they are the same.
(Or, to be more correct, we say that they are “the same within experimental
uncertainty”.
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� inner jaws

� outer jaws

Figure 16.5: Vernier Caliper

35 �
�

�
��

“0” of vernier scale falls between
36 and 37 on main scale.

40 45 50

0

A
A

A
AK

“1” of vernier scale lines up closest
with a line above on main scale.

5 10

The final reading is 36.1 ± 0.1 (of whatever appropriate units).

Figure 16.6: Reading a Vernier Scale

16.1.3 Precision and Measurement Uncertainty

Since the precision measure is the smallest difference between two measure-
ments which can be distinguished, then we can say that a measurement made
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16.1 Theory 47

with a given instrument will have an uncertainty equal to the precision mea-
sure. This means that another measurement would have to be either smaller
or larger than this one by at least the precision measure to be distinguished
from it. For this reason, the way that we usually record a measurement is

value ± precision measure

0 5 10

Figure 16.7: Measuring a realistic object

16.1.4 Effective Uncertainties

Reality is not always precise

Many times when we take measurements the precision measure of the instru-
ment doesn’t really matter, since we’re trying to measure something “fuzzy”.
Look at the object in Figure 16.7. Since it doesn’t have straight edges, mea-
suring the length is a bit problematic. In fact, what we want to measure may
depend on why we want to measure it. Consider these questions:

1. If we used this to prop open a window, how big a window opening could
we have?

2. If we wanted to determine the area of the object, what length would
we want?

3. If we wanted to use the edge for drawing straight lines on paper, what
length of line could we draw?
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In a situation where the precision measure isn’t really the limitation on the
precision of a measurement, we estimate a realistic or effective uncertainty
based on whatever sort of limits make sense.

If we’re going to give a realistic (or effective) uncertainty, it’s going to have
to be bigger than the precision measure, because the precision measure is
the best we can do with the instrument. (Remember that if the difference
between two measurements is less than the precision measure they are the
same.)

16.1.5 Accuracy

The accuracy of an instrument refers to how close a measurement is to
the true value of the quantity being measured. Usually if an instrument is
inaccurate it is due to one of two factors:

• It doesn’t read zero when it should.

• Readings that should be something other than zero are off by amounts
that depend on the readings themselves.

The first of these is known as zero error and the second is known as cali-
bration error or linearity error.

Zero error

Some measuring instruments have a certain zero error associated with
them. This is particularly true of micrometer calipers, as used in this exper-
iment. Take note of the actual reading of the instrument when the expected
value would be zero. (For example, close the calipers and record the reading
you get with its uncertainty.) Subsequent measurements should be corrected
by adding or subtracting the zero error as appropriate. For some instruments,
zero error will be easy to determine. For others, it may be very difficult.

Note that since the zero error is a reading taken from the instrument, it has
an uncertainty equal to the precision measure, like any other measurement
would.
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Calibration Error (or linearity error)

A good example of a linearity error would be seen in a metal ruler. Since
metal expands when heated, if the ruler was used at very high or very low
temperatures the readings would be correspondingly high or low. (On the
other hand, a wooden ruler may absorb humidity from the air and expand,
or dry out and contract.)

While the precision measure of an instrument can usually be obtained by
simply looking at the instrument, the accuracy of an instrument can only be
determined by using it to measure known reference quantities.

16.2 Recap

By the end of this exercise, you should understand the following terms:

• range of an instrument

• precision (contrast with accuracy)

• precision measure

• accuracy (contrast with precision)

• measurement uncertainty

• zero error

• effective uncertainty

• range of values for a measurement

In addition, you should be able to take readings and express them with
their uncertainties using:

• linear scales

• micrometer scales

• vernier scales

• digital displays
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Uncertain Results

17.1 The most important part of a lab

The “Discussion of Errors” (or Uncertainties) section of a lab report is where
you outline the reasonable limits which you place on your results. If you have
done a professional job of your research, you should be prepared to defend
your results. In other words, you should expect anyone else to get results
which agree with yours; if not, you suspect theirs. In this context, you want
to discuss sources of error which you have reason to believe are significant.

17.1.1 Operations with Uncertainties

When numbers, some or all of which are approximate, are combined by ad-
dition, subtraction, multiplication, or division, the uncertainty in the results
due to the uncertainties in the data is given by the range of possible calculated
values based on the range of possible data values.

Remember: Since uncertainties are an indication of the imprecise nature of a
quantity, uncertainties are usually only expressed to one decimal place. (In
other words, it doesn’t make sense to have an extremely precise measure of
the imprecision in a value!)

For instance, if we have two numbers with uncertainties, such as x = 2±1
and y = 32.0 + 0.2, then what that means is that x can be as small as 1 or
as big as 3, while y can be as small as 31.8 or as big as 32.2 so adding them
can give a result x+y which can be as small as 32.8 or as big as 35.2, so that
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the uncertainty in the answer is the sum of the two uncertainties. If we call
the uncertainties in x and y ∆x and ∆y, then we can illustrate as follows:

Adding

x ± ∆x = 2 ± 1
+ y ± ∆y = 32.0 ± 0.2

(x + y) ± ? = 34.0 ± 1.2
= (x + y) ± (∆x + ∆y)

Thus

∆(x + y) = ∆x + ∆y (17.1)

Thus x+y can be between 32.8 and 35.2, as above. (Note that we should
actually express this result as 34±1 to keep the correct number of significant
figures.)

Remember: Uncertainties are usually only expressed to one decimal place,
and quantities are written with the last digit being the uncertain one.

Subtracting

If we subtract two numbers, the same sort of thing happens.
x ± ∆x = 45.3 ± 0.4

− y ± ∆y = −18.7 ± 0.3
(x− y) ± ? = 26.6 ± 0.7

= (x− y) ± (∆x + ∆y)
Thus

∆(x− y) = ∆x + ∆y (17.2)

Note that we still add the uncertainties, even though we subtract the
quantities.

Multiplying

Multiplication and division are a little different. If a block of wood is found
to have a mass of 1.00± 0.03 kg and a volume of 0.020± 0.001 m3, then the
nominal value of the density is 1.00kg

0.020m3 = 50.0kg/m3 and the uncertainty in
its density may be determined as follows:
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The mass given above indicates the mass is known to be greater than
or equal to 0.97 kg, while the volume is known to be less than or equal to
0.021 m3. Thus, the minimum density of the block is given by 0.97kg

0.021m3 =

46.2kg/m3. Similarly, the mass is known to be less than or equal to 1.03 kg,
while the volume is known to be greater than or equal to 0.019 m3. Thus,
the maximum density of the block is given by 1.03kg

0.019m3 = 54.2kg/m3.

Notice that the above calculations do not give a symmetric range of uncer-
tainties about the nominal value. This complicates matters, but if uncertain-
ties are small compared to the quantities involved, the range is approximately
symmetric and may be estimated as follows:

x±∆x = 1.23± 0.01 = 1.23
± (0.01/1.23× 100%)

× y ±∆y = ×7.1± 0.2 = ×7.1
± (0.2/7.1× 100%)

(x× y)±? = 8.733±? ≈ 8.733
± ((0.01/1.23 + 0.2/7.1)× 100%)
≈ 8.733
± ((0.01/1.23 + 0.2/7.1)× 8.733)
≈ 8.733
± 0.317
≈ (x× y)

±
(

∆x
x

+ ∆y
y

)
(x× y)

Thus

∆(x× y) ≈
(

∆x

x
+

∆y

y

)
(x× y) (17.3)

So rather than adding absolute uncertainties, we add relative or percent
uncertainties. (To the correct number of significant figures, the above result
would be

x× y ≈ 8.7± 0.3

with one figure of uncertainty and the last digit of the result being the un-
certain one.)

If you’re a purist, or if the uncertainties are not small, then the uncer-
tainty in the density can then be estimated in two obvious ways;

1. the greater of the two differences between the maximum and minimum
and the accepted values
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2. (or the maximum and minimum values can both be quoted, which is
more precise, but can be cumbersome if subsequent calculations are
necessary.)

(In the previous example, the first method would give an uncertainty of
4.2 kg/m3.)

Dividing

Division is similar to multiplication, as subtraction was similar to addition.
x±∆x = 7.6± 0.8 = 7.6

± (0.8/7.6× 100%)
÷y ±∆y = ÷2.5± 0.1 = ÷2.5

± (0.1/2.5× 100%)
(x÷ y)±? = 3.04±? ≈ 3.04

± ((0.8/7.6 + 0.1/2.5)× 100%)
≈ 3.04

± ((0.8/7.6 + 0.1/2.5)× 3.04)
≈ 3.04

± 0.4416
= (x÷ y)

±
(

∆x
x

+ ∆y
y

)
(x÷ y)

Thus

∆(x÷ y) ≈
(

∆x

x
+

∆y

y

)
(x÷ y) (17.4)

(To the correct number of significant figures, the above result would be

x÷ y ≈ 3.0± 0.4

with one figure of uncertainty and the last digit of the result being the un-
certain one.)

Determining Uncertainties in Functions Algebraically

Consider a function as shown in Figure 17.1. If we want the know the un-
certainty in f(x) at a point x, what we mean is that we want to know the
difference between f(x + ∆x) and f(x).
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f(x)

y = f(x)

x

f(x + ∆x)

∆x

Figure 17.1: Uncertainty in a Function of x

If we take a closer look at the function, like in Figure 17.2, we can see
that if ∆x is small, then the difference between the function and its tangent
line will be small. We can then say that

f(x) + f ′(x)×∆x ≈ f(x + ∆x)

or

∆f(x) ≈ f ′(x)×∆x

For a function with a negative slope, the result would be similar, but the
sign would change, so we write the rule with absolute value bars like this

∆f(x) ≈ |f ′(x)|∆x (17.5)

to give an uncertainty which is positive.1 Remember that uncertainties are
usually rounded to one significant figure, so this approximation is generally
valid.

1Now our use of the ∆ symbol for uncertainties should make sense; in this example
it has been used as in calculus to indicate “a small change in”, but for experimental
quantities, “small changes” are the result of uncertainties.
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y = f(x)

f(x)

x

f(x + ∆x)

f(x) + f ′(x)×∆x

∆x

Figure 17.2: Closer View of Figure 17.1

Example: Marble volume Here is an example. Suppose we measure the
diameter of a marble, d, with an uncertainty ∆d, then quantities such as the
volume derived from d will also have an uncertainty. Since

V =
4

3
π

(
d

2

)3

then

V ′ = 2π

(
d

2

)2

=
π

2
d2

and so

∆V ≈
∣∣∣π
2
d2
∣∣∣∆d

If we have a value of d = 1.0±0.1 cm, then ∆V = 0.157 cm3 by this method.
Rounded to one significant figure gives ∆V ≈ 0.2 cm3.
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Determining Uncertainties in Functions by Inspection

Note: In the following section and elsewhere in the manual, the notation ∆x
is used to mean “the uncertainty in x”.

When we have a measurement of 2.0± 0.3 cm, this means that the max-
imum value it can have is 2.0 + 0.3cm. The uncertainty is the difference
between this maximum value and the nominal value (ie. the one with no
uncertainty). We could also say that the minimum value it can have is
2.0−0.3 cm, and the uncertainty is the difference between the nominal value
and this maximum value. Thus if we want to find the uncertainty in a func-
tion, f(x), we can say that

∆f(x) ≈ fmax − f (17.6)

or
∆f(x) ≈ f − fmin (17.7)

where fmax is the same function with x replaced by either x+∆x or x−∆x;
whichever makes f bigger, and fmin is the same function with x replaced by
either x + ∆x or x − ∆x; whichever makes f smaller. (The approximately
equals sign is to reflect the fact that these two values may not be quite the
same, depending on the function f .) For instance, if

f(x) = x2 + 5

then clearly, if x is positive, then replacing x by x + ∆x will make f a
maximum.

fmax = f(x + ∆x) = (x + ∆x)2 + 5

and so

∆f(x) ≈ fmax − f = f(x + ∆x)− f(x) =
(
(x + ∆x)2 + 5

)
−
(
x2 + 5

)
On the other hand, if we wanted to find the uncertainty in

g(t) =
1√
t

then, if t is positive, then replacing t by t−∆t will make g a maximum.

gmax = g(t−∆t) =
1√

(t−∆t)
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and so

∆g(t) ≈ gmax − g = g(t−∆t)− g(t) =

(
1√

(t−∆t)

)
−
(

1√
t

)
If we had a function of two variables,

h(w, z) =

√
w

z2

then we want to replace each quantity with the appropriate value in order
to maximize the total, so if w and z are both positive,

hmax =

√
(w + ∆w)

(z −∆z)2

and thus

∆h ≈ hmax − h =

√
(w + ∆w)

(z −∆z)2 −
√

w

z2

Notice in each of these cases, it was necessary to restrict the range of the
variable in order to determine whether the uncertainty should be added or
subtracted in order to maximize the result. In an experiment, usually your
data will automatically be restricted in certain ways. (For instance, masses
are always positive.)

Example:Marble volume Using the above example of the volume of a
marble,

∆V ≈ V (d + ∆d)− V (d)

Since

V =
4

3
π

(
d

2

)3

then

∆V ≈ 4

3
π

(
d + ∆d

2

)3

− 4

3
π

(
d

2

)3

If we have a value of d = 1.0±0.1 cm, then ∆V = 0.173 cm3 by this method.
Rounded to one significant figure gives ∆V ≈ 0.2 cm3 as the value to be
quoted.
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Determining Uncertainties by Trial and Error

For a function f(x, y), the uncertainty in f will be given by the biggest of

|f(x + ∆x, y + ∆y)− f(x, y)|

or

|f(x−∆x, y + ∆y)− f(x, y)|

or

|f(x + ∆x, y −∆y)− f(x, y)|

or

|f(x−∆x, y −∆y)− f(x, y)|

Note that for each variable with an uncertainty, the number of possibilities
doubles. In most cases, common sense will tell you which one is going to be
the important one, but things like the sign of numbers involved, etc. will
matter a lot! For example, if you are adding two positive quantities, then
the first or fourth above will give the same (correct) answer. However, if one
quantity is negative, then the second and third will be correct.

The advantage of knowing this method is that it always works. Sometimes
it may be easier to go through this approach than to do all of the algebra
needed for a complicated expression, especially if common sense makes it
easy to see which combination of signs gives the correct answer.

Determining Uncertainties Algebraically

To summarize, the uncertainty in results can usually be calculated as in the
following examples (if the percentage uncertainties in the data are small):

(a) ∆(A + B) = (∆A + ∆B)

(b) ∆(A−B) = (∆A + ∆B)

(c) ∆(A×B) ≈ |AB|
(∣∣∆A

A

∣∣+ ∣∣∆B
B

∣∣)
(d) ∆(A

B
) ≈

∣∣A
B

∣∣ (∣∣∆A
A

∣∣+ ∣∣∆B
B

∣∣)
(e) ∆f(A±∆A) ≈ |f ′(A)|∆A

Note that the first two rules above always hold true.
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To put it another way, when adding or subtracting, you add absolute un-
certainties. When multiplying or dividing, you add percent or relative uncer-
tainties. Note that for the last rule above that angles and their uncertainties
must be in radians for the differentiation to be correct! (In the examples
above, absolute value signs were omitted since all positive quantities were
used.) (Some specific uncertainty results can be found in Appendix I.)

Remember that a quantity and its uncertainty should always have the same
units, so you can check units when calculating uncertainties to avoid mis-
takes.

Two important corrollaries: constants and powers The above rules
can be used to derive the results for two very common situations;

• multiplying a quantity with an uncertainty by a constant

• raising a quantity with an uncertainty to a power

In the first case, a constant can be thought of as a number with no
uncertainty. The product rule above is

∆(A×B) ≈ |AB|
(∣∣∣∣∆A

A

∣∣∣∣+ ∣∣∣∣∆B

B

∣∣∣∣)
If A is a constant, then ∆A = 0, so

∆(A×B) ≈ |AB|
(∣∣∣∣���∆A

A

∣∣∣∣+ ∣∣∣∣∆B

B

∣∣∣∣) =
∣∣A��B

∣∣ (∣∣∣∣∆B

��B

∣∣∣∣) = |A∆B| = |A|∆B

In the second case, the product rule is:

∆f(A±∆A) ≈ |f ′(A)|∆A

and so if
f(A) = An

then
f ′(A) = nAn−1

and so
∆(A±∆A)n ≈

∣∣nAn−1
∣∣∆A

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

17.1 The most important part of a lab 61

Example: Marble volume If we have a value of d = 1.0 ± 0.1 cm, as
used previously, then ∆V = 0.157 cm3 by this method.

Mathematically, this result and the previous one are equal if ∆d << d. You
can derive this using the binomial approximation, which simply means
multiplying it out and discarding and terms with two or more ∆ terms mul-
tiplied together; for instance ∆A∆B ≈ 0

Choosing Algebra or Inspection

Since uncertainties are usually only expressed to one decimal place, then
small differences given by different methods of calculation, (ie. inspection or
algebra), do not matter.

Example: Marble volume Using the previous example of the marble, if
we have a value of d = 1.0± 0.1 cm, then ∆V = 0.173 cm3 by the inspection
method. Rounded to one significant figure gives ∆V ≈ 0.2 cm3 as the value
to be quoted. By the algebraic method, ∆V = 0.157 cm3. Rounded to one
significant figure gives ∆V ≈ 0.2 cm3, which is the same as that given by the
previous method. So in this example a 10% uncertainty in d was still small
enough to give the same result (to one significant figure) by both methods.

Sensitivity of Total Uncertainty to Individual Uncertainties

When you discuss sources of uncertainty in an experiment, it is important to
recognize which ones contributed most to the uncertainty in the final result.
In order to determine this, proceed as follows:

1. Write out the equation for the uncertainty in the result, using whichever
method you prefer.

2. For each of the quantities in the equation which have an uncertainty,
calculate the uncertainty in the result which you get if all of the other
uncertainties are zero.

3. Arrange the quantities in descending order based on the size of the
uncertainties calculated. The higher in the list a quantity is, the greater
it’s contribution to the total uncertainty.
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The sizes of these uncertainties should tell you which factors need to be
considered, remembering that only quantities contributing 10% or more to
the total uncertainty matter. For example, from before we had a function of

two variables,

h(w, z) =

√
w

z2

so by inspection, its uncertainty is given by

∆h ≈ hmax − h =

√
(w + ∆w)

(z −∆z)2 −
√

w

z2

So we can compute

∆hw ≈
√

(w + ∆w)

z2
−
√

w

z2

and

∆hz ≈
√

w

(z −∆z)2 −
√

w

z2

Note that in the first equation, all of the ∆z terms are gone, and in the
second, all of the ∆w terms are gone. By the algebraic method,

∆h ≈
√

w

z2

(
∆w

2w
+

2∆z

z

)
and so

∆hw ≈
√

w

z2

(
∆w

2w

)
and

∆hz ≈
√

w

z2

(
2∆z

z

)
Note that until you plug values into these equations, you can’t tell which
uncertainty contribution is larger.

In the above example, if we use values of w = 1.00 ± 0.01 and z =
2.00±0.02, then the proportional uncertainties in both w and z are the same,
1%. However, using either inspection or the algebraic method, ∆h = 0.006,
and ∆hw = 0.001 while ∆hz = 0.005; in other words, the uncertainty in the
result due to ∆z is five times the uncertainty due to ∆w! (As you get more
used to uncertainty calculations, you should realize this is because z is raised
to a higher power than w, and so its uncertainty counts for more.) In order
to improve this experiment, it would be more important to try and reduce
∆z than it would be to try and reduce ∆w.
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Simplifying Uncertainties

Uncertainty calculations can get quite involved if there are several quantities
involved. However, since uncertainties are usually only carried to one or
two significant figures at most, there is little value in carrying uncertainties
through calculations if they do not contribute significantly to the total.

You do not need to carry uncertainties through if they do not contribute
more than 10% of the total uncertainty, since uncertainties are usually only
expressed to one decimal place. (However, be sure to give bounds for these
uncertainties when you do this.)

Note that this shows a difference between doing calculations by hand
versus using a spreadsheet. If you are doing calculations by hand, it makes
sense to drop insignificant uncertainties like this.

If you’re using a spreadsheet in order to allow you to change the data and
recalculate, it may be worth carrying all uncertainties through in case some
of them may be more significant for different data.

17.1.2 Uncertainties and Final Results

When an experiment is performed, it is crucial to determine whether or not
the results make sense. In other words, do any calculated quantities fall
within a “reasonable” range?

The reason for doing calculations with uncertainties is so that uncertain-
ties in final answers can be obtained. If, for instance, a physical constant
was measured, the calculated uncertainty determines the range around the
calculated value in which one would expect to find the “theoretical” value.
If the theoretical value falls within this range, then we say that our results
agree with the theory within our experimental uncertainty.

For instance, if we perform an experiment and get a value for the accel-
eration due to gravity of g = 9.5 ± 0.5m/s2 then we can say that we say
that our values agrees with the accepted value of g = 9.8m/s2 within our
experimental uncertainty.

If we have two values to compare, such as initial and final momentum to
determine whether momentum was conserved, then we see if the ranges given
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by the two uncertainties overlap. In other words, if there is a value or range
of values common to both, then they agree within experimental uncertainty.

So if an experiment gives us a value of pi = 51.2 ± 0.7 kg-m/s and pf =
50.8 ± 0.5 kg-m/s, then we would say the values agree within experimental
uncertainty since the range from 50.5 kg-m/s → 51.3 kg-m/s is common to
both. Since what we were studying was the conservation of momentum, then
we would say that in this case momentum was conserved within experimental
uncertainty. Note that if both uncertainties were 0.1 kg-m/s, then our results
would not agree and we would say that momentum was not conserved within
experimental uncertainty.

Mathematically, if two quantities a and b, with uncertainties ∆a and ∆b are
compared, they can be considered to agree within their uncertainties if

|a− b| ≤ ∆a + ∆b (17.8)

A constant given with no uncertainty given can usually be assumed to have
an uncertainty of zero.

If we need to compare 3 or more values this becomes more complex.

If two quantities agree within experimental error, this means that the dis-
crepancy between experiment and theory can be readily accounted for on the
basis of measurement uncertainties which are known. If the theoretical value
does not fall within this range, then we say that our results do not agree with
the theory within experimental uncertainty. In this situation, we cannot ac-
count for the discrepancy on the basis of measurement uncertainties alone,
and so some other factors must be responsible.

If two numbers do not agree within experimental error, then the percentage
difference between the experimental and theoretical values must be calcu-
lated as follows:

Percent Difference =

∣∣∣∣theoretical − experimental

theoretical

∣∣∣∣× 100% (17.9)

Remember: Only calculate the percent difference if your results do not agree
within experimental error.
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17.1 The most important part of a lab 65

In our example above, we would not calculate the percentage difference
between our calculated value for the acceleration due to gravity of g = 9.5±
0.5m/s2 and the accepted value of g = 9.8m/s2 since they agree within our
experimental uncertainty.

Often instead of comparing an experimental value to a theoretical one,
we are asked to test a law such as the Conservation of Energy. In this case,
what we must do is to compare the initial and final energies of the system in
the manner just outlined.2 If the values agree, then we can say that energy
was conserved, and if the values don’t agree then it wasn’t. In that case we
would calculate the percentage difference as follows:

Percent Difference =

∣∣∣∣ initial − final

initial

∣∣∣∣× 100% (17.10)

Significant Figures in Final Results

Always express final answers with absolute uncertainties rather than percent
uncertainties. Also, always quote final answers with one significant digit of
uncertainty, and round the answers so that the least significant digit quoted
is the uncertain one. This follows the same rule for significant figures in
measured values.

Even though you want to round off your final answers to the right number
of decimal places, don’t round off in the middle of calculations since this will
introduce errors of its own.

17.1.3 Discussion of Uncertainties

In an experiment, with each quantity measured, it is necessary to consider all
of the possible sources of error in that quantity, so that a realistic uncertainty
can be stated for that measurement. The “Discussion of Uncertainties” (or
“Discussion of Errors”) is the section of the lab report where this process can
be explained.

2 There is another possibility which you may consider. Suppose you compare the change
in energy to its expected value of zero. In that case, any non-zero change would result
in infinite percent difference, which is mathematically correct but not terribly meaningful
physically.
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66 Uncertain Results

Discussions of sources of error should always be made as concrete as pos-
sible. That means they should be use specific numerical values and relate
to specific experimental quantities. For instance, if you are going to speak
about possible air currents affecting the path of the ball in a fre–fall exper-
iment, you must reduce it to a finite change in either the fall time or the
height.

Relative Size of Uncertainties

f −∆f

f

f + ∆f

∆f

∆f

Figure 17.3: Relative Size of Quantity and its Uncertainty

The uncertainties which matter most in an experiment are those which
contribute most to the uncertainty in the final result. Consider Figure 17.4,
which may be seen as a magnification of one of the bands in Figure 17.3.
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biggest

next biggest

all the rest

Figure 17.4: Contributions of Various Sources to Total Uncertainty

If the big rectangle represents the uncertainty in the final result, and the
smaller rectangles inside represent contributions to the total from various
sources, then one source contributes almost half of the total uncertainty in
the result. The first two sources contribute about 75% of the total, so that
all of the other sources combined only contribute about 25%. If we want to
improve the experiment, we should try to address the factors contributing
most. Similarly, in discussing our uncertainties, the biggest ones deserve most
attention. In fact, since uncertainties are rounded to one decimal place, any
uncertainty contributing less than 10% to the final uncertainty is basically

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

68 Uncertain Results

irrelevant. The only reason to discuss such uncertainties is to explain why
they are not significant.

Types of Errors

There are 3 major “categories” of sources of errors, in order of importance;

1. Measurable uncertainties-these are usually the biggest. The pre-
cision measure of each instrument used must always be recorded with
every measurement. If “pre-measured” quantities are used, (such as
standard masses), then there will usually be uncertainties given for
these as well. If physical constants are given they may have uncertain-
ties given for them, (such as the variation in the acceleration due to
gravity by height above sea level, latitude, etc.) Where the realistic
uncertainty in a quantity comes from any of these, (which will often be
the case), you do not usually need to refer to them in your discussion.
However, if there are any which contribute greatly to the uncertainty in
your results, you should discuss them. For example, when you measure
the mass of an object with a balance, then if the precision measure is
the uncertainty used in your calculations, you don’t need to discuss it,
unless it is one of the biggest uncertainties in your calculations. Keep
in mind that without these values being given, it is impossible to tell
whether any of the following sources of error are significant or not.

2. Bounded uncertainties-these are things which you observed, and
have put limits on and usually are much smaller than those in the group
above. (Remember that since uncertainties are ultimately rounded to
one significant digit, any which contribute less than 10% to the total
uncertainty can be ignored.) Since you have observed them, you can
give some estimate of how much effect they may have. For instance,
suppose you measure the length of a table with a metre stick, and no-
tice that the ends of the table are not exactly smooth and straight. If
you can find a way to measure the variation in the length of the table
due to this, then you can incorporate this into your uncertainty (if it
is big enough) and discuss it.
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A plausible error is one which can be tested. If you cannot figure out how
to test for an error, it is not worth discussing. (Putting a bound on an error
implies some method of testing for its existence, even if you are not able to
do it at the present time.)

3. Blatant filler-these are things you may be tempted to throw in to
sound more impressive. Don’t!!! If you did not observe them, don’t dis-
cuss them. If you suggest the gravitational pull of Jupiter is affecting
your results, you’d better be prepared to show evidence (such as get-
ting consistently different results at different times of day as the Earth
rotates and so changes the angle of Jupiter’s pull.) Do you even know
in which direction the pull of Jupiter would be???

If you are going to discuss a source of uncertainty, then you must either have
included it in your calculations, or given some reasonable bounds on its size.
If you haven’t done either of those, forget it!

You must discuss at least one source of systematic error in your report, even
if you reject it as insignificant, in order to indicate how it would affect the
results.

Reducing Errors

Whenever errors are discussed, you should suggest how they may be reduced
or eliminated. There is a “hierarchy” of improvements which should be ev-
ident in your discussion. The following list starts with the best ideas, and
progresses to less useful ones.

1. Be smart in the first place. You should never suggest you may have done
something wrong in the lab; a professional who recognizes a mistake
goes back and fixes it before producing a report. If you find yourself
making a mistake which would seem likely to be repeated by other
people, you may want to mention it in your report so that instructions
may be clarified for the future.

2. Repeat the measurements once or twice to check for consistency. Rep-
etition is a very good thing to do if your data are inconsistent or scat-
tered. If certain values appear to be incorrect, you may want to repeat
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70 Uncertain Results

them to make sure. If this seems to be true, and you feel a measurement
was wrong, you should still include it in your report but explain why
it was not used in your calculations. (This is probably similar to the
previous one; if you think your data may be messed up, you should try
to repeat it before you write your report, so this is not something you
should be suggesting in your own report, although you should explain
that you did it if you felt it was necessary.)

3. Change technique. It may be that a different way of doing things,
using the same equipment, could (potentially) improve your results. If
so, this should be explained.

One example of this which may sound odd at first is to try and increase
the error and see what change is produced. For instance, if you neglected
the mass of something in an experiment, you could increase that mass
and then repeat the experiment. If the results do not change, then it is
unlikely that the original mass had a significant effect.

Question: How big a change in the quantity in question (such as the
mass just mentioned) should you try? Explain.

4. Make more types of observations. In some cases, monitoring certain
things during the experiment may ensure they do not affect the results.
This may be relevant in the case of “bounded uncertainties” above. It
should be possible with equipment available in the lab. (For instance, if
you are measuring the speed of sound, and the expected value is given
at 25◦ C, then you might explain a discrepancy by the temperature
being different. However, in this case, if you think the temperature
may have affected your results, then you should check a thermometer
to get the actual temperature during the experiment to suggest whether
or not that was likely to have caused an effect.)

5. Repeat the measurements to average the results. While it is always
good to repeat measurements, there is a law of diminishing returns.
(In other words, repeating measurements a few times will give you a
lot of information about how consistent your results are; repeating them
many more times will not tell you as much. That is why the standard
deviation of the mean decreases as 1/

√
n, where n is the number of

measurements; as n gets bigger, the change happens more slowly.) In
fact, depending on the uncertainties involved, repetition at some point
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17.1 The most important part of a lab 71

is of no value. (That is when the standard deviation of the mean gets
smaller than the uncertainty in the individual measurements. At that
point you cannot improve without using a more precise instrument, no
matter how many times you repeat the experiment.)

6. Change equipment; this is a last resort. Since this in essence means
doing a different experiment, it is least desirable, and least relevant.
Your goal is to produce the best results possible with the equipment
available.

Ridiculous Errors

Certain errors crop up from time to time in peoples’ reports without any
justification. The point of your discussion is to support your results, placing
reasonable bounds on them, not to absolve yourself of responsibility for them.
Would you want to hire people who did not have faith in their own research?
Including errors merely to “pad” your report is not good; one realistic source
of error with justification is better than a page full of meaningless ones.
Following are some commonly occurring meaningless ones.

• “..human error...”

This is the most irritating statement you can make; you should have
read over the instructions beforehand until you knew what was re-
quired, and then performed the experiment to the best of your ability.
If you didn’t you were being unprofessional and are wasting the reader’s
time. After doing your calculations, you should be able to tell from your
results if they make sense. If not, you should go back and correct your
errors. (Note something like reaction time does not fall into this cat-
egory, because it is well-defined and can easily be measured. Vague,
undefined errors are the big no-no.)

• “..parallax...”

Parallax is the error you get from looking at a scale like a speedometer
or a clock from the side; the position of the hands will appear different
depending on your angle. With just about any scale I’ve seen, I’d be
hard pressed to get an error of more than 5 → 10% from parallax (and
the latter very rarely). Even that would only occur if I was deliberately
trying to observe off-axis. Unless there is some reason that you cannot
eliminate it, don’t ascribe any significant error to it.
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72 Uncertain Results

• “..component values may not have been as stated...”

Usually people say this about masses, etc. I’m tempted to say “Well,
DUH! ” but I won’t. Of course if given values are incorrect then cal-
culations will be in error, but unless you have evidence for a specific
value being wrong, (which should include some bounds on how wrong
it could be), then it is just wild speculation. (You may allow reason-
able uncertainties for these given values if you justify them.) Of course,
suggesting equipment was damaged or broken is in this same category.
If you understand what is going on, you should be able to tell if the
equipment is functioning correctly. If it isn’t, you should fix it or re-
place it (unless it’s not working because you are not using it correctly;
in that case, see “human error” above.) If it’s possible you have broken
it, you should bring this to the attention of the lab demonstrator, and
be very sure you know how to use it properly before trying again with
new equipment.

A Note on Human Errors

By now you are probably wondering why human error is so bad, even though
humans have to make judgments in experiments, which will certainly con-
tribute to uncertainties in the results. The problem is vague unspecified
“human error” which is more of a disclaimer than a real thoughtful expla-
nation. If you had to judge the time when an object stopped moving, for
instance, you can discuss the judgment required, but in that case you should
be able to determine concrete bounds for the uncertainties introduced, rather
than suggesting some vague idea that your results may be meaningless.

A rule of thumb to follow in deciding whether a particular type of “human
error” is valid is this; if it is something which you may have done wrong,
that is not valid. If it is a limitation which anyone would have doing the
experiment, then it is OK, provided you bound it. (But don’t call it “human
error”; be specific about what judgment is involved.)
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Graphical Data Analysis

18.1 Theory

18.1.1 Correlation

A correlation exists if a graph of two variables shows some sort of trend; in
other words, knowing the value of one variable gives some prediction about
the value of the other variable. In this case, the easiest way to view the
comparison is by an x-y graph, where one variable is plotted on each axis.1

Figure 18.1 shows a graph where the correlation is obvious. All of the
points fit on a straight line. This is rarely the case. More often the data
look like Figure 18.2. This graph does not show as clear a correlation as the
previous one, but the trend is still clear; points go from bottom left to top
right. Knowing the value on one axis will allow a prediction of the value on
the other axis with reasonable accuracy.

In Figure 18.3 there is no clear relationship between values on the two
axes; knowing the value on one will give no estimate about the value on the
other. This shows that the two variables are unrelated.

1Correlations don’t have to be linear, but it’s easier to illustrate them that way. Simi-
larly, correlations can be negative (i.e. having a negative slope), but examples will usually
be positive.
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74 Graphical Data Analysis

Figure 18.1: Obvious positive correlation

Figure 18.2: “Noisy” positive correlation

Correlation is not causation!

This is a point which cannot be overstated. The existence of a correlation
doesn’t indicate why the correlation exists. Here are a few examples:
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Figure 18.3: No correlation; random

1. Plotting number of degrees obtained versus income would show a pos-
itive correlation. This does not mean that rising income results in
degrees being issued. The relationship is the other way around.2

2. A plot of vocabulary versus height would show a positive correlation.
This does not mean that taller adults have bigger vocabularies than
shorter adults; children are shorter than adults and have a smaller
vocabulary. Age is the variable which is responsible for the changes in
both height and vocabulary.

If the slope is zero within experimental uncertainty, then there is no correla-
tion.

Correlation and prediction

One of the main reasons for looking for correlations in data, if not the main
reason, is to be able to predict the value of one variable from the known value
of the other. A strong correlation between two variables means one may be

2Of course, honorary degrees are occasionally given to very successful, (specifically,
wealthy), people, although the number of these degrees is quite small.
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76 Graphical Data Analysis

used to predict the other. It doesn’t matter whether the correlation is positive
or negative. The weaker the correlation, the less precise the prediction can
be. If there is no correlation, then by definition, one variable cannot be used
to predict the other.

A strong correlation, either positive or negative, means one variable is a good
predictor of the other.

18.1.2 Comparison

Sometimes, instead of having two numerical variables, you have one numer-
ical variable for more than one data set, where the data sets are differenti-
ated by some non-numerical parameter. For instance, in an election poll, you
might show percentage of voters favouring each party, (a numerical variable),
broken down by party, (a non-numerical parameter). In this case, probably
the easiest way to view the comparison is by a bar graph, where each bar is
for a different value of the non-numeric parameter. 3 Such a graph is shown
in Figure 18.1. To turn this into a stacked bar graph, we need to modify

Party
Support Liberal Conservative NDP Green

Percent 32 25 10 4
∆% 5 4 2 1

Table 18.1: Mythical Poll Results

the data slightly, by making a third row, which is a duplicate of the second,
and changing the items in the first row by subtracting the values from the
second row. This is shown in Figure 18.2. In this way, the minimum value
for each row, (i.e. the nominal value minus the uncertainty), is given by the
top of the lowest bar, the nominal value is given by the top of the middle
bar, and the maximum value, (i.e. the nominal value plus the uncertainty),
is given by the top of the top bar. The modified data can then be plotted
to show how the different quantities compare. From Figure 18.4 we can see
that support for Liberals and Conservatives is the same, within experimental

3If the numerical values are percentages, a pie chart may be more useful.
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Party
Support Liberal Conservative NDP Green

Percent - ∆% 27 21 8 3
∆% 5 4 2 1
∆% 5 4 2 1

Table 18.2: Modified Data

�	
minimum

�) nominal

� maximum

Figure 18.4: Comparing items

uncertainties, since a horizontal line can be drawn which passes through the
uncertainty range for both. For any other combination, this is not the case.

If the values agree within experimental uncertainty, then they are the same.
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18.2 Recap

By the end of this exercise, you should understand the following terms:

• correlation

• comparison

In addition, you should know what kind of graph to use to illustrate each.

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9Chapter 19

Graphs and Graphical Analysis

19.1 Introduction

One of the purposes of a scientific report is to present numerical information,
ie. data and calculated results, in concise and meaningful ways. As with
other parts of the report, the goal is to make the report as self-explanatory
as possible. Ideally a person unfamiliar with the experiment should be able
to understand the report without having to read the lab manual. (In your
case, the reader can be assumed to be familiar with the general procedure of
the experiment, but should not be expected to be intimately familiar with
experiment-specific symbols. For instance, if you must measure the diameter
of an object in the lab, and use the symbol d for it, be sure to state what d
represents the first time it is used.)

A physical law is a mathematical relationship between measurable quan-
tities, as has been stated earlier. A graph is a visual representation of such a
relationship. In other words, a graph is always a representation of a particu-
lar mathematical relationship between the variables on the two axes; usually
these relationships are made to be functions.

As a representation of how data are related, a graph will usually contain
both data points and a fitted curve showing the function which the data
should follow. (The term “curve” may include a straight line. In fact, it is
often easiest to interpret results when an equation has been linearized so
that the graph should be a straight line. Linearization will be discussed in
Chapter 20, “Linearizing Equations” .)

With single values which are measured or calculated, when there is an
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80 Graphs and Graphical Analysis

“expected” value, then uncertainties are used to determine how well the
experimental value matches the expected value. For a set of data which
should fit an equation, it is necessary to see how all points match the function.
This is done using error bars, which will be discussed later. In essence, error
bars allow one to observe how well each data point fits the curve or line on the
graph. When parameters of an equation, such as the slope and y-intercept
of a straight line, are determined from the data, (as will be discussed later),
then those parameters will have uncertainties which represent the range of
values needed to make all of the data points fit the curve.

19.2 Graphing

19.2.1 Data Tables

Often the data which is collected in an experiment is in a different form than
that which must be plotted on a graph. (For instance, masses are measured
but a graph requires weights.) In this case, the data which is to be plotted
should be in a data table of its own. This is to make it easy for a reader
to compare each point in the data table with its corresponding point on the
graph. The data table should include the size of error bars for each point, in
each dimension. Units in the table should be the same as on the graph.

Any graph must be plotted from data, which should be presented in
tables. Tables should

• have ruled lines outside and separating columns, etc. to make it neat
and easy to read

• have meaningful title and column headings

• not be split up by page breaks (ie. unless a table is bigger than a single
page, it should all fit on one page.)

• have a number associated with it (such as “Table 1”) for reference
elsewhere in the report, and a name, (such as “Steel Ball Rolling down
Incline”) which makes it self–explanatory

• include the information required for any numerical data, ie. units,
uncertainties, etc.

A sample is shown in Table 19.1.
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i xi ∆xi ti ∆ti
(cm) (cm) (s) (s)

1 0.40 0.03 0.0 0.1
2 0.77 0.04 2.0 0.1
3 1.35 0.04 2.7 0.1

Table 19.1: Position versus Time for Cart

19.2.2 Parts of a Graph

1. Title

The title of a graph should make the graph somewhat self–explanatory
aside from the lab. Something like “y vs. x” may be correct but re-
dundant and useless if the person viewing the graph can read. “Object
in Free Fall” would be more helpful as the reader may be able to figure
out the significance of the graph herself.

2. Axis Labels

As above, “m” and “l” are not as useful as “added mass (m) in grams”,
and “length of spring (l) in cm”. In this case the words are meaning-
ful, while the symbols are still shown to make it easy to find them in
equations. Units must be included with axis labels.

3. Axis Scales

The following 3 points are pertinent if you are plotting graphs “by
hand”. If you use a spreadsheet, these things are usually taken care
of automatically.

(a) Always choose the scales of the axes so that the data points will
be spread out over as much of the plotting area as possible.

(b) Choose the scales in a convenient manner. Scales that are easy to
work with are to be preferred over scales such as ones where every
small division corresponds to 0.3967 volts, for example. A better
choice in such a case would be either 0.25, 0.50, or perhaps even 0.4
volts per division, the decision of which would be determined by
the previous constraint. If you have discrete, i.e. integer, values on
one axis, do not use scientific notation to represent those values.
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Figure 19.1: Wrong: Data, (not empty space), should fill most of the graph

(c) (0,0) does not have to be on graph – data should cover more than
1/4 of the graph area; if you need to extrapolate, do it numerically.

4. Plotting Points

Often, results obtained from graphs are slightly suspicious due to the
simple fact that the experimenter has incorrectly plotted data points.
If plotting by hand, be careful about this. Data points must be fitted
with error bars to show uncertainties present in the data values. If the
uncertainties in either or both dimensions are too small to show up on
a particular graph, a note to that effect should be made on the graph
so that the reader is aware of that fact.

Do not connect the points like a dot-to-dot drawing!
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5. Points for Slope

In calculating parameters from a graph, such as the slope, points on
a line should be chosen which are not data points, even if data points
appear to fall directly on the line; failure to follow this rule makes the
actual line drawn irrelevant and misleading.

When plotting points for the slope, a different symbol should be used
from that used for data points to avoid confusion. The co–ordinates
of these data points should be shown near the point as well for the
reader’s information. If one uses graph paper with a small enough
grid, it may be possible to choose points for the slope which fall on the
intersection of grid lines which simplifies the process of determining
their co–ordinates. Of course, points for the slope should always be
chosen as far apart as possible to minimize errors in calculation.

6. Error Bars

Data points must be fitted with error bars to show uncertainties present
in the data values. If the uncertainties in either or both dimensions are
too small to show up on a particular graph, a note to that effect should
be made on the graph so that the reader is aware of that fact. Uncer-
tainties in quantities plotted on a graph are shown by error bars. Fig-
ure 19.2 shows a point with its error bars. The range of possible values
for the data point in question actually includes any point bounded by
the rectangle whose edges fall on the error bars. The size of the error
bars is given by the uncertainties in both coordinates. (Actually, the
point’s true value is most likely to fall within the ellipse whose extents
fall on the error bars. This is because it is unlikely that the x and y
measurements are both in error by the maximum amount at the same
time.) In fact, error bars may be in one or both directions, and they
may even be different in the positive and negative directions.

Is the origin a data point?

Sometimes an experiment produces a graph which is expected to go through
(0, 0). In this case, whether to include the origin as a data point or not
arises. There is a basic rule: Include (0, 0) as a data point only if you have
measured it (like any other data point). Often a graph which is expected to
go through the origin will not do so due to some experimental factor which
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x−∆x x x + ∆x

y −∆y

y

y + ∆y

Figure 19.2: Point with error bars

was not considered in the derivation of the equation. It is important that
the graph show what really happens so that these unconsidered factors will
in fact be noticed and adjusted for. This brings up a second rule: If the
origin is a data point, it is no more “sacred” than any other data point. In
other words, don’t force the graph through (0, 0) any more than you would
through any other point. Doing a least squares fit will protect you from this
temptation.
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x−∆x− x x + ∆x+

y −∆y−

y

y + ∆y+

Figure 19.3: Graph with unequal error bars in positive and negative direc-
tions

19.3 Graphical Analysis

Usually the point of graphing data is to determine parameters of the mathe-
matical relationship between the two quantities. For instance, when plotting
a straight line graph, the slope and y–intercept are the parameters which
describe that relationship.

Note that the slope and y–intercept and their uncertainties should have units.
The units of the y–intercept should be the same as the y variable, and the
slope should have units of

[slope] =
[y]

[x]
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Figure 19.4: A line through the origin is not always the best fit

19.4 Linearizing Equations

In many cases, the mathematical model you are testing will suggest how the
data should be plotted. A great deal of simplification is achieved if you can
linearize your graph, i.e., choose the information to be plotted in such a way
as to produce a straight line. (This is discussed in Chapter 20, “Linearizing
Equations” .) For example, suppose a model suggests that the relationship
between two parameters is

z = Ke−λt

where K and λ are constants. If a graph of the natural logarithm of z is
plotted as a function of t, a straight line given by

ln z = ln K − λt

will be obtained. The parameters K and λ will be much easier to determine
graphically in such a case.

In particular, if we substitute y = ln z and x = t in the above equation,
and if the slope and y–intercept are measured to be, respectively, m and b,
then it should be clear that

m = −λ
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and

b = ln K

19.5 Curve Fitting

Always draw smooth curves through your data points, unless you have reason
to believe that a discontinuity in slope at some point is genuine.

Your graphs should not look like a dot–to–dot drawing.

Figure 19.5: Wrong: Graphs should not look like dot-to-dot drawings

If you are plotting the points using the computer, draw the curve by hand
if necessary to avoid this problem. However, do not fit data to a curve with
no physical significance simply so that all of the points fit.

Do not use an arbitrary function just because it goes through all the data
points!

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

88 Graphs and Graphical Analysis

Figure 19.6: Wrong: Graphs should not have meaningless curves just to fit
the data

Note that unless a set of data exactly fits a curve, choosing a curve of
“best fit” is somewhat arbitrary. (For example, consider 4 data points at
(-1,1), (1,1), (1,-1) and (-1,-1). What line fits these points best?)

Usually, going “by eye” is as good as anything; the advantage to a method
such as the least squares fit is that it is easily automated, and is generally
reliable.

If plotting by eye, one should observe that the line of best fit will usually
have an equal number of points above and below it. As well, as a rule, there
should not be several points at either end of the graph on the same side of
the curve. (If this is the case, the curve can be adjusted to avoid this.)

Determining the y-intercept is easy if it is shown on the graph. However
if it isn’t, you can determine it from the points you used for the slope. If

m =
y2 − y1

x2 − x1

and
y = mx + b
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for any points on the line, including (x1, y1) and (x2, y2) then

y2 = mx2 + b

so
b = y2 −mx2

and finally

b = y2 −
(

y2 − y1

x2 − x1

)
x2

19.6 Least Squares Fitting

Least Squares Fitting is a procedure for numerically determining the equa-
tion of a curve which “best approximates” the data being plotted. If we wish
to fit a straight line to data in the form

y = mx + b

then the least squares fit gives values for b, the y-intercept, and m, the slope,
as follows:1

b =
(
∑

yi) (
∑

x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑

x2
i )− (

∑
xi)

2 (19.3)

and

m =
N (
∑

xiyi)− (
∑

xi) (
∑

yi)

N (
∑

x2
i )− (

∑
xi)

2 (19.4)

(Note: You do not need to calculate uncertainties for m and b during least
squares fit calculations like this. Uncertainties in m and b will be dealt with
later.)

1You may notice that a particular quantity comes up a lot. It is

N
(∑

x2
i

)
−
(∑

xi

)2

(19.1)

It only takes a couple of lines of algebra to show that this equals

N (N − 1) σx
2 (19.2)

where σx
2 is the sample standard deviation of the x values.
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If you are interested, an appendix contains a derivation of the least squares
fit. In any case you may use the result above.

One important concept which will come up later is that of degrees of free-
dom, which is simply the number which is the difference between the number
of data points, (N above), and the number of parameters being determined
by the fit, (2 for a straight line). Thus, for a linear fit, the number of degrees
of freedom, ν, is given by:

ν = N − 2 (19.5)

19.6.1 Correlation coefficient

Equation 19.6 gives the square of the Pearson product-moment correla-
tion coefficient, which we will refer to simply as the correlation coefficient.2

R2 =
(N
∑

xiyi − (
∑

xi)(
∑

yi))
2

(N
∑

xi
2 − (

∑
xi)2)

(
N
∑

yi
2 − (

∑
yi)

2) (19.6)

The correlation coefficient, R, is a number which has a value between -1 and
+1, where a value of -1 indicates a perfect negative correlation, +1 indicates a
perfect positive correlation, and a value of zero indicates no correlation. Thus
R2 is a value between zero and 1 indicating just the strength of a correlation.
The closer R2 is to one, the stronger the correlation between two variables.
To put it another way, the closer it is to one the better one variable can be
used as a predictor of the other.

19.7 Uncertainties in Graphical Quantities

After the slope and intercept have been calculated, their associated errors
are calculated in one of two ways depending on the data. (This is analogous
to the idea that the uncertainty in the average is the bigger of the standard
deviation of the mean and the uncertainty in the individual values.) The two
possible cases are outlined below.

2As long as we’re dealing with a linear fit, this is the quantity that would commonly
be used.
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Unless the points fit exactly on a straight line, any graph with big enough
error bars will fit the first case, and any graph with small enough error bars
will fit the second. It is the relative size of the error bars which determines
which case it is.

19.7.1 Small Scatter of Data

If the scatter in the data points is small, a straight line which passes through
every error bar on the graph can be found, as shown in Figure 19.7. This
indicates that the uncertainties in your results are primarily due to the un-
certainties of the measuring instruments used.
The slope and intercept can be found graphically, by eye or using the least
squares fit method.

Line of minimum slope

Line of maximum slope

Figure 19.7: Small Scatter of Data Points

To obtain error estimates in these quantities, one draws two lines: a line
with the maximum slope passing through all the error bars; and the line
with the minimum slope passing through all the error bars. These extremes
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will determine the required uncertainties in the slope and intercept. (In this
graph and the one following, boxes have been drawn around each point and
its error bars to indicate the “uncertainty region” around each point. These
would not usually be on a graph, but they are shown here for illustration.)

The points for the maximum and minimum slope will not always be the end-
points on the graph. Also, the data points providing the endpoints for the two
lines will not usually be the same for both. If the maximum and minimum

slope are not symmetric about the average, you can calculate

∆m ≈ mmax −mmin

2

and

∆b ≈ bmax − bmin

2

For negative slope

For positive slope

( x1 −∆x1, y1 + ∆y1)
( x2 + ∆x2, y2 −∆y2)

( x1 + ∆x1, y1 −∆y1)

( x2 −∆x2, y2 + ∆y2)

( x1 −∆x1, y1 −∆y1)

( x2 −∆x2, y2 −∆y2)

( x2 + ∆x2, y2 + ∆y2)
( x1 + ∆x1, y1 + ∆y1)

Figure 19.8: Maximum and Minimum Slope Coordinates from a Point

If we label two points x1 and x2, where x1 < x2, then we can see from
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Figure 19.8 that the steepest line which touches the error bars for both x1

and x2 is the line between (x1 +∆x1,y1−∆y1) and (x2−∆x2,y2 +∆y2). The
slope of this line will then be

mmax =
(y2 + ∆y2)− (y1 −∆y1)

(x2 −∆x2)− (x1 + ∆x1)
(19.7)

and then the y-intercept is given by

bmin = (y1−∆y1)−mmax(x1 +∆x1) = (y2 +∆y2)−mmax(x2−∆x2) (19.8)

Similarly the line with the least slope which touches the error bars for both
x1 and x2 is the line between (x1 −∆x1,y1 + ∆y1) and (x2 + ∆x2,y2 −∆y2).
The slope of this line will then be

mmin =
(y2 −∆y2)− (y1 + ∆y1)

(x2 + ∆x2)− (x1 −∆x1)
(19.9)

and then the y-intercept is given by

bmax = (y1 +∆y1)−mmin(x1−∆x1) = (y2−∆y2)−mmin(x2 +∆x2) (19.10)

The case for a negative slope is shown in Figure 19.8; the analysis is left to
the student.

The points for the maximum and minimum slope will not always be the end-
points on the graph.

19.7.2 Large Scatter of Data

Often, you will not be able to find a line which crosses every error bar, as
with the data in Figure 19.9, and you will have to resort to the numerical
method below. In this case, the uncertainties in your graphical results are
primarily due to the random variations in the data.

Once these values for the slope and intercept are determined, the sum of
squares error, S is computed. For the linear case, S can be shown to have a
value of

S =
∑

y2
i −m

∑
xiyi − b

∑
yi (19.11)
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Figure 19.9: Large Scatter of Data

In order to estimate the uncertainty in each parameter, the standard devia-
tion σ is computed from

σ =

√
S

N − 2
(19.12)

where N − 2 is the number of degrees of freedom mentioned earlier. (Often
the symbol ν is used for degrees of freedom.) The standard error (i.e.
uncertainty) in the intercept is

σb = σ

√ ∑
x2

i

N (
∑

x2
i )− (

∑
xi)

2 (19.13)

and the standard error (uncertainty) in the slope is

σm = σ

√
N

N (
∑

x2
i )− (

∑
xi)

2 (19.14)
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i xi x2
i xiyi yi y2

i

1 0.1 0.01 0.3 3 9
2 0.2 0.04 0.8 4 16
3 0.3 0.09 1.2 4 16
4 0.4 0.16 2.0 5 25

N
∑

xi

∑
x2

i

∑
xiyi

∑
yi

∑
y2

i

4 1.0 0.3 4.3 16 66

Table 19.2: Sample Least Squares Fit Data

As long as our data fit this second case, then we can use σb and σm as the
uncertainties in the y–intercept and the slope respectively, and use the sym-
bols ∆b and ∆m instead. Keep in mind, however, that if our data fit the first
case, then these terms are not interchangeable. Note that the uncertainties
in the slope and y–intercept should have the same units as the slope and
y–intercept.

(Note: You do not need to calculate uncertainties for ∆m and ∆b since these
are uncertainties themselves!)

19.7.3 Sample Least Squares Calculations

Following is a calculation of the least squares fit and the standard error of
the slope and intercept for some test data.

N
(∑

x2
i

)
−
(∑

xi

)2

= (4)(0.3)− (1)2 = 0.2

b =
(
∑

yi) (
∑

x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑

x2
i )− (

∑
xi)

2 =
(16)(0.3)− (1)(4.3)

0.2
= 2.5

m =
N (
∑

xiyi)− (
∑

xi) (
∑

yi)

N (
∑

x2
i )− (

∑
xi)

2 =
(4)(4.3)− (1)(16)

0.2
= 6.0

S =
∑

y2
i −m

∑
xiyi − b

∑
yi = (66)− (6)(4.3)− (2.5)(16) = 0.2

σ =

√
S

N − 2
=

√
0.2

4− 2
= 0.316228

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

96 Graphs and Graphical Analysis

σb = σ

√ ∑
x2

i

N (
∑

x2
i )− (

∑
xi)

2 = (0.316228)

√
0.3

0.2
= (0.3878298)

σm = σ

√
N

N (
∑

x2
i )− (

∑
xi)

2 = (0.316228)

√
4

0.2
= (1.414214)

Thus, if our data are such that σb and σm are the uncertainties in the y–
intercept and the slope, and thus ∆b and ∆m, then

b = 2.5± 0.4

and
m = 6± 1

19.8 References

• The Analysis of Physical Measurements, Emerson M. Pugh and George
H. Winslow, Addison-Wesley Series in Physics, 1966, QC39.P8

• Errors of Observation and Their Treatment, J. Topping, Chapman and
Hall Science Paperbacks, 1972(4th Ed.)

• Statistics, Murray R. Speigel, Schaum’s Outline Series in Mathematics,
McGraw-Hill, 1961
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Linearizing Equations

20.1 Theory

Often, the point of a scientific experiment is to try and find empirical val-
ues for one or more physical quantities, given measurements of some other
quantities and some mathematical relationship between them. For instance,
given a marble has a mass of 5 g, and a radius of 0.7 cm, the density of the
marble can be calculated given that v = 4/3πr3 and ρ = m/v. (For the sake
of simplicity, uncertainties will be ignored for now, although the calculation
of those should be familiar by now.)

Many times, however, rather than having one measurement of a quan-
tity, or set of quantities, we may have several measurements which should
all follow the same relationships, (such as if we had several marbles made
of the same material in the example above), and we wish to combine the
results. The usual way of combining results is to create a graph, and ex-
tract information (such as the density) from the slope and y–intercept of the
graph.

One may be tempted to ask why a graph should be better than merely
averaging all of the data points. The answer is that an average is completely
unbiased. The variation of any one point from the norm is no more or less
important than the variation of any other point. A graph, however, will show
any point which differs significantly from the general trend. Analysis of the
graphical data (such as with a least squares fit) will allow such “outliers” to
be given either more or less weight than the rest of the data as the researcher
deems appropriate. Depending on the situation, the researcher may wish to
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m

r

Figure 20.1: Non-linear equation
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20.1 Theory 99

verify any odd point(s), or perhaps the trend will indicate that a linear model
is insufficient. In any case, it is this added interpretive value that a graph
has which makes it preferable.

A plot is better than an average since it may indicate systematic errors in
the data.

The value in fitting the data to an equation is that once the fit has been
done, rather than continuing to work with a large amount of data, we can
simply work with the parameters of our fit and their uncertainties. In the
case of a straight line, all of our data can be replaced by four quantities;
m, ∆m, b and ∆b.

A fit equation replaces a bunch of data with a few parameters.

The reason a linear graph is so useful is that it’s easier to identify whether
a line is straight than it is to identify whether it looks more like y = x2 or
y = x3, for instance.

A straight line is easy to spot with the unaided eye.

If the data fits an equation of the form y = mx+ b, then it is easy to plot
a straight line graph and interpret the slope and y–intercept, but it is rarely
that simple. In most cases, the equation must be modified or linearized
so that the variables plotted are different than the variables measured but
produce a straight line.

Linearizing equations is this process of modifying an equation to pro-
duce new variables which can be plotted to produce a straight line graph. In
many of your labs, this has been done already.

Look again at y = mx + b. Note that y and x are variables, (as each can
take on a range of values), while m and b are constants, (as there is only one
value for each for all of the data points). We can linearize an equation if we
can get it in the form

variable1 = constant1 × variable2 + constant2

There are a few things to note:

1. Several constants combined together produces another single constant.

2. Powers or functions of constants are also constants.
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3. Constants may have “special” values of 0 or 1 so they appear “invisi-
ble”. For example

y = mx

is still the equation of a straight line, where b = 0. As well,

y = b

is the equation of a line where m = 0.

4. Variables may be combined together to form new variables.

5. Powers or functions of variables are also variables.

Note that linearizing an equation will produce expressions for the slope and
y–intercept which depend only on the constants in the original equation, not
on the original x and y variables. This means that the constants can be
related to the slope and y–intercept rather than the original variables.

20.1.1 Techniques for Linearization

If a relationship involves only multiplication and division, (including powers),
then logarithms can be used to linearize. Sometimes taking roots or powers
of both sides of an equation will help.

20.1.2 Procedure for Linearization

The steps are as follows:

1. Rearrange the equation to get one variable (or a function of it) on the
left side of the equation; this becomes your y variable.

2. Regroup the right side of the equation to create a term containing the
other variable (or some function of it).

3. Use the left-side variable (or the function of it) as your x variable, and
then your slope should be whatever multiplies it; your y intercept is
whatever additive term is left over.
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Note: It is important to realize that you don’t need to understand an equa-
tion to linearize it; all you have to know is which parameters are variables (ie.
things you have data for), and which parameters are constants (ie. things
you want to calculate). Of course different experiments involving the same
relationship may make different parameters variable, and so how an equa-
tion is linearized will depend on the data used. To again consider the above
example: The original equations were

v = (4/3)πr3 (20.1)

and

ρ = m/v (20.2)

where the quantities m and r are measured. (ie. We have several marbles of
the same material, so we can get several measurements of m and r, but we
expect ρ to be the same for all of them.) Thus for this situation, m and r
are variables, and ρ is a constant. We can combine the two equations to get

ρ =
m

(4/3)πr3
(20.3)

or

ρ =
3m

4πr3
(20.4)

This equation has a constant on one side, and a mixture of variables and
constants on the other. First we should rearrange it to get a variable on the
left hand side. Suppose we rearrange the equation, giving

m = (4/3)πρr3 (20.5)

This leaves a variable on the left. From this point on, there are two main
possibilities for how to proceed: 1

Method I

Now we can create a new variable, Y such that

Y = m

1Usually the process is not as explicit as this. ie. one doesn’t usually create an X and
a Y , but doing this illustrates the procedure.
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By the rule about powers of variables being variables, then we can create a
new variable X given by

X = r3

Then equation 20.5 above becomes

Y = (4/3)πρX (20.6)

since π is a constant, and ρ should be, and using the rule that combinations
of constants produce constants, then we can define M , a constant, (not the
same as m), as

M = (4/3)πρ

so equation 20.6 becomes

Y = MX + 0

which is the equation of a straight line. (In the case, B, the y–intercept
is zero.)2 So if we plot our “modified” variables, we should get a straight
line, passing through the origin with a slope M . How can we get ρ from the
graph? Well, from above

M = (4/3)πρ

so

ρ =
3M

4π

where M is the slope of the graph.

Method II

We can take logarithms of both sides, so that Y such that equation 20.5
above becomes

ln m = ln ((4/3)πρ) + ln r3 (20.7)

grouping the terms so one only contains constants (and so the combination
should be constant) and one only contains the variable r. We can bring down
the exponent so equation 20.7 becomes

ln m = ln ((4/3)πρ) + 3 ln r

2Occasionally we can get a situation where the slope is similarly “invisible”, if it is 1
or 0.
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m

r3

Figure 20.2: One linearization
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Now we can create new variables, Y such that

Y = ln m

and
X = ln r

which is the equation of a straight line. So if we plot our “modified” variables,
we should get a straight line. How can we get ρ from the graph? Well, from
above

B = ln ((4/3)πρ)

so

ρ =
3

4π
eB

where B is the y-intercept of the graph. (In this case, the value you get from
the graph for the slope should suggest whether the fit is a good one.)

Remember that after linearization, our results depend on our graphical quan-
tities of the slope and the y-intercept, rather than on the original measured
quantities.

20.1.3 Choosing a Particular Linearization

Often there may be more than one linear form for the equation so there may
be more than one “right answer”. In this case, there are a few things which
may help you choose.

Simple variables

A preferable linearization is one which most simplifies understanding the
graph or interpreting the results. For instance, in the above example, it
would have been possible to use (4/3)πr3 instead of r3 as our x variable, but
that would make confusing axis scales and/or units (although it would have
made the slope be ρ with no calculation).

Spread of data

The spread of data will be different for each linearization. A graph with
points which are more equally spaced is generally preferable to one where
the points are concentrated in one area.
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ln (m)

ln (r)

Figure 20.3: Another linearization
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Size of error bars

Like the spread of data, the size of the error bars will be different for each lin-
earization. A graph with more equally sized error bars is generally preferable
to one where the error bars vary greatly in size for different points.

Usually it is preferable to separate variables and constants as much as possible
in your linearization so that graph variables are easily related to experimental
ones.

20.1.4 Uncertainties in Results

After determining how equation parameters relate to graphical quantities
as above, uncertainties can be determined as usual. In the above example
Method I gives

∆ρ =
3∆M

4π
while for Method II

∆ρ =
3

4π
eB∆B

or
∆ρ = ρ∆B

For instance, from the example above, using Method I we would say:

• Plot m vs. r3. (In other words, the independent (x) variable is r3 and
dependent (y) variable is m.)

• The uncertainty in the dependent variable is ∆m.

• The uncertainty in the independent variable is 3r2∆r.

• The slope of the graph will be M = (4/3)πρ.

• The y-intercept should be zero3.

• The density will be determined from the slope by the equation ρ = 3M
4π

.

• The uncertainty in the density will be determined from the slope by
the equation ∆ρ = 3∆M

4π
.

3If the y-intercept turns out to be something other than zero, then there is some
systematic error in our experiment.
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20.2 Recap

By the end of this exercise, you should understand the following terms:

• linear graph

• linearized equation
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Lab Reports: General Outline

A lab report is personal, in the sense that it explains what you did in the lab
and summarizes your results, as opposed to an assignment which generally
answers a question of some sort. On an assignment, there is (usually) a “right
answer”, and finding it is the main part of the exercise. In a lab report, rather
than determining an “answer”, you may be asked to test something. (Note
that no experiment can ever prove anything; it can only provide evidence for
or against; just like in mathematics finding a single case in which a theorem
holds true does not prove it, although a single case in which it does not hold
refutes the theorem. A law in physics is simply a theorem which has been
tested countless times without evidence of a case in which it does not hold.)
The point of the lab report, when testing a theorem or law, is to explain
whether or not you were successful, and to give reasons why or why not. In
the case where you are to produce an “answer”, (such as a value for g), your
answer is likely to be different from that of anyone else; your job is to describe
how you arrived at yours and why it is reasonable under the circumstances.

21.1 Format of a Lab Report

The format of the report should be as follows:

21.1.1 Title

The title should be more specific than what is given in the manual; it should
reflect some specifics of the experiment.
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21.1.2 Purpose

The specific purpose of the experiment should be briefly stated. (Note that
this is not the same as the goals of the whole set of labs; while the labs as a
group are to teach data analysis techniques, etc., the specific purpose of one
experiment may indeed be to determine a value for g, for instance.) Usually,
the purpose of each experiment will be given in the lab manual. However, it
will be very general. As in the title, you should try and be a bit more specific.

There should always be both qualitative and quantitative goals for a
lab.

Qualitative

This would include things like “see if the effects of friction can be observed”.
In order to achieve this, however, specific quantitative analyses will need to
be performed.

Quantitative

In a scientific experiment, there will always be numerical results produced
which are compared with each other or to other values. It is based on the re-
sults of these comparrisons that the qualitative interpretations will be made.

21.1.3 Introduction

In general, in this course, you will not have to write an Introduction section.

An introduction contains two things: theory for the experiment and ra-
tionale for the experiment.

Theory

Background and theoretical details should go here. Normally, detailed deriva-
tions of mathematical relationships should not be included, but references
must be listed. All statements, equations, and ‘accepted’ values must be jus-
tified by either specifying the reference(s) or by derivation if the equation(s)
cannot be found in a reference.
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Rationale

This describes why the experiment is being done, which may include refer-
ences to previous research, or a discussion of why the results are important
in a broader context.

21.1.4 Procedure

The procedure used should not be described unless you deviate from that
outlined in the manual, or unless some procedural problem occurred, which
must be mentioned. A reference to the appropriate chapter(s) of the lab
manual is sufficient most of the time.

Ideally, someone reading your report and having access to the lab manual
should be able to reproduce your results, within reasonable limits. (Later on
we will discuss what “reasonable limits” are.) If you have made a mistake in
doing the experiment, then your report should make it possible for someone
else to do the experiment without making the same mistake. For this reason,
lab reports are required to contain raw data, (which will be discussed later),
and explanatory notes.

Explanatory notes are recorded to

• explain any changes to the procedure from that recorded in the lab
manual,

• draw attention to measurements of parameters, values of constants, etc.
used in calculations, and

• clarify any points about what was done which may otherwise be am-
biguous.

Although the procedure need not be included, your report should be clear
enough that the reader does not need the manual to understand your write–
up.

(If you actually need to describe completely how the experiment was done,
then it would be better to call it a “Methods” section, to be consistent with
scientific papers.)

21.1.5 Experimental Results

There are two main components to this section; raw data and calculations.
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Raw Data

In this part, the reporting should be done part by part with the numbering
and titling of the parts arranged in the same order as they appear in the
manual.

The raw data are provided so that someone can work from the actual
numbers you wrote down originally before doing calculations. Often mistakes
in calculation can be recognized and corrected after the fact by looking at
the raw data.

In this section:

• Measurements and the names and precision measures of all instruments
used should be recorded; in tabular form where applicable.

• If the realistic uncertainty in any quantity is bigger than the precision
measure of the instrument involved, then the cause of the uncertainty
and a bound on its value should be given.

• Comments, implicitly or explicitly asked for regarding data, or exper-
imental factors should be noted here. This will include the answering
of any given in-lab questions.

Calculations

There should be a clear path for a reader from raw data to the final results
presented in a lab report. In this section of the report:

• Data which is modified from the original should be recorded here; in
tabular form where applicable.

• Uncertainties should be calculated for all results, unless otherwise spec-
ified. The measurement uncertainties used in the calculations should
be those listed as realistic in the raw data section.

• Calculations of quantities and comparisons with known relationships
should be given. If, however, the calculations are repetitive, only one
sample calculation, shown in detail, need be given. Error analysis
should appear here as well.
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• Any required graphs would appear in this part. (More instruction
about how graphs should be presented will be given later.)

• For any graph, a table should be given which has columns for the data
(including uncertainties) which are actually plotted on the graph.

• Comments, implicitly or explicitly asked for regarding calculations, ob-
servations or graphs, should be made here.

Sample calculations may be required in a particular order or not. If
the order is not specified, it makes sense to do them in the order in which
the calculations would be done in the experiment. If the same data can be
carried through the whole set of calculations, that would be a good choice to
illustrate what is happening.

Printing out a spreadsheet with formulas shown does not count as showing
your calculations; the reader does not have to be familiar with spreadsheet
syntax to make sense of results.

Post-lab questions should not be answered ina numbered list; rather the
answers should be integrated in to the Discussion and Conclusion sections
based on where they would be most appropriate.

21.1.6 Discussion

This section is where you explain the significance of what you have deter-
mined and outline the reasonable limits which you place on your results.
(This is what separates a scientific report from an advertisement.) It should
outline the major sources of random and systematic error in an experiment.
Your emphasis should be on those which are most significant, and on which
you can easily place a numerical value. Wherever possible, you should try
to suggest evidence as to why these may have affected your results, and in-
clude recommendations for how their effects may be minimized. This can be
accompanied by suggested improvements to the experiment.

Two extremes in tone of the discussion should be avoided: the first is
the “sales pitch” or advertisement mentioned above, and the other is the
“apology” or disclaimer (“ I wouldn’t trust these results if I were you; they’re
probably hogwash.”) Avoid whining about the equipment, the time, etc. Your
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job is to explain briefly what factors most influenced your results, not to ab-
solve yourself of responsibility for what you got, but to suggest changes or
improvements for someone attempting the same experiment in the future.
Emphasis should be placed on improving the experiment by changed tech-
nique, (which may be somewhat under your control), rather than by changed
equipment, (which may not).

M any of the in-lab questions are directed to things which ought to be dis-
cussed here. Like the post-lab questions, don’t answer them in a list, but
integrate them into the text.

This section is usually worth a large part of the mark for a lab so be
prepared to spend enough time thinking to do a reasonable job of it.

You must discuss at least one source of systematic error in your report, even
if you reject it as insignificant, in order to indicate how it would affect the
results.

21.1.7 Conclusions

Just as there are always both qualitative and quantitative goals for a lab,
there should always be both qualitative and quantitative conclusions from
a lab.

Qualitative

This would include things like “see if the effects of friction can be observed”.
In order to achieve this, however, specific quantitative analyses will need to
be performed.

Quantitative

In a scientific experiment, there will always be numerical results produced
which are compared with each other or to other values. It is based on the re-
sults of these comparrisons that the qualitative interpretations will be made.

General comments regarding the nature of results and the validity of rela-
tionships used would be given in this section. Keep in mind that these com-
ments can be made with certainty based on the results of error calculations.
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The results of the different exercises should be commented on individually.
Your conclusions should refer to your original purpose; eg. if you set out to
determine a value for g then your conclusions should include your calculated
value of g and a comparison of your value with what you would expect.

While you may not have as much to say in this section, what you say
should be clear and concise.

21.1.8 References

If an ‘accepted’ value is used in your report, then the value should be foot-
noted and the reference given in standard form. Any references used for the
theory should be listed here as well.

21.2 Final Remarks

Reports should be clear, concise, and easy to read. Messy, unorganized
papers never fail to insult the reader (normally the marker) and your grade
will reflect this. A professional report, in quality and detail, is at least as
important as careful experimental technique and analysis.

Lab reports should usually be typed so that everything is neat and or-
ganized. Be sure to spell check and watch for mistakes due to using words
which are correctly spelled but inappropriate.

21.3 Note on Lab Exercises

Lab exercises are different than lab reports, and so the format of the write-
up is different. Generally exercises will be shorter, and they will not include
either a Discussion or a Conclusion section.

Computer lab exercises may require little or even no report, but will have
points which must be demonstrated in the lab.
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Lab Reports: Finer Points

22.1 Introduction

Previously, you have prepared lab reports primarily with a marker in mind.
However you should be starting to gear your reports to a more general reader.
How this will change your report should become clear as you read the fol-
lowing:

22.1.1 Purpose of a report

The goal of presenting a report is to inform, not to impress. That means
that, on the one hand, you don’t want to fill space with drivel just to make
the reader think you know something, (it’s not likely to work), but on the
other hand, at times it may be helpful to repeat a piece of useful information
two or three times in a report to save the reader having to flip back and forth.
Individual sections should be as self–contained as possible, so that a reader
is not normally forced to hunt for pertinent facts all through the report.

22.1.2 Structuring a report

In some labs, lab templates may have been used to organize reports in a very
standard way to give some uniformity to the reports. Now you will not have
that order imposed, and so you will have to structure your own reports so
that they are understandable. Part of what this will require is for you to put
in enough “English glue” to make the report easy to read, even (especially!)
for someone who does not have the lab manual at hand.
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22.1.3 Moving from lab notes to a report

When handling data, either to analyze it or to present it, it is important to
make a distinction between between utility and clarity. In other words, how
you set up a spreadsheet to analyze data or graph it may not be the way
that you should set it up for someone else to look at. Similarly, showing the
output block from a least squares fit reflects whether you did it correctly,
but what you should present is the meaningful results of the fit, not every
bit of output. (If it needs to be included for a marker, put it in an appendix
so that it’s there, but does not hurt the flow of the report.) Following are
some guidelines for presenting data for the reader, not for the writer or the
marker.

22.2 Text

• Grammar and spelling count!

• All numerical quantities must include uncertainties!

• In the text of a report, all symbols should be explained, especially if
they are non–standard (for instance if you use “w” instead of “ω”).
For instance “w is the angular frequency in rads/sec.”) Units should
be given for each quantity as well.

• The report should have brief descriptions of procedures, etc., so that
a person not following the manual can still make sense of the data.
If you are following a manual, you need not go into great detail, but
the significance of parameters stated, etc. should be explained; eg.
“current was measured by calculating the voltage across resistor RM”

• Quotes, standard values, etc. should be foot-noted and referenced.

• Derivations may be done by hand (if long), but if you are using a
word processor, this is a chance to learn more features if you use it to
do at least the short derivations. Make sure the symbols you use in
derivations match the symbols you use in the text. (See above example
with w and ω.)

• Watch for similar or duplicate symbols; eg. e, the base for natural
logarithms, and e the charge on an electron (or in the above example
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where you might have both w and ω). If you have to use two symbols
like this in one report, change one (and define it!) or change both.
(For example, use q for the charge on an electron, or replace ex with
exp(x).)

• Quantities which would normally be expressed using scientific notation
with uncertainties should usually be presented in the standard form;
eg. (2.3± 0.2)× 10−6m.

The purpose of scientific notation is to remove placeholder zeroes, either
before or after the decimal point, from a number. Thus it often does NOT
make sense in numbers in the range from about 0.1 → 99, where there are no
placeholder zeroes.

• All results should be given the correct number of significant figures;
ie. one or at most two significant figures for uncertainties, and quanti-
ties rounded so least significant digit is in the same place as the least
significant digit of uncertainty.

22.3 Tables

• Always include tables of raw data, even if you need to modify the data
to plot a graph. That way if you make a mistake in calculations, it will
be possible to correct later.

• Tables must have boxes around them and lines separating columns, etc.
ie. unstructured spreadsheets are not OK.

• Any data which will be plotted in a graph should be shown in a table
with the same units and uncertainties as on the graph.

• No table should be split by a page break; if necessary make it into two
separate tables.

• All tables need names and numbers such as “Table 1” (which should
be referenced in the report), and meaningful labels which match the
text (or explanations of how the labels correspond to the quantities in
the text). Table 22.1has two obvious problems; the column labels are
somewhat cryptic, and much data is redundant.
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Vx dVx Ix dIx Used (y/n)
0.10 0.02 1.5 0.3 y
0.19 0.02 1.3 0.3 y
0.24 0.02 1.2 0.3 y
0.41 0.02 0.8 0.3 n

Table 22.1: One way to do it

In Table 22.2, some of this is changed. This is much less “busy”, and
more descriptive.

Voltage Current
0.10 1.5
0.19 1.3
0.24 1.2
0.41 0.8†

All voltages ± 0.02 volts.
All currents ± 0.3 amps.
† point not used in fit.

Table 22.2: More concise way

Least squares fit output can be somewhat confusing; indicate which points
were used (if not all, as in the above example), the fit equation, and the
parameters calculated as well as their standard errors. Be sure to include
the proper units for both. A table may not even be a good way to give these.

22.4 Graphs

• All graphs must include error bars! If error bars in one or both dimen-
sions are too small to be seen on a graph, then a note should be made
on the graph to indicate this.

• Titles should be descriptive; ie. they should give pertinent information
which is not elsewhere on the graph.

• Graphs can be annotated with fit results so that by looking at the graph
the reader can see fit results (with uncertainties, of course). Make sure
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to mark which points were used for the fit (if not all). Keep in mind
the above rules about symbols.

• Fit results should be given in terms of actual graphical quantities, not
x and y. For instance, “Slope is 4.5 ± 0.2 N/kg”; y-intercept is 3.1 ±
0.1N”, as opposed to “y=4.5x+3.1” which lacks uncertainties, units,
and relevance.

• Put units on each axis, and either use a grid for both dimensions, or
else none at all. (A horizontal–only grid looks kind of odd.)

• Graphs should be in the specified orientation. NOTE: a graph of y
versus x means y is on the vertical axis and x is on the horizontal axis.

22.5 Linearizations

• Always include the original (ie. non-linearized) equation(s) as well as
the linearized one(s).

22.6 Least Squares Fits

• Always plot data (with error bars) before fitting to see that points make
sense. (Make sure error bars are correct!)

• Clearly identify data used in fit (if not all points are used).

• Give results meaningful names, such as “slope”, “standard error in
slope”, etc.

• Include units for slope, y-intercept, etc.

• Show the fit line on the graph with the data.

• Identify whether the graph shows “small” or “large” scatter, and then
according to that identification, do whichever of these is appropriate:

– Perform fit in such a way as to get standard errors in both y-
intercept and slope.
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– Find maximum and minimum slopes (if they exist) and show them
on the graph with the data.

• Determine the uncertainties in the slope and the y–intercept from the
result above.

• If you would have expected either the slope and the y–intercept to be
zero, and it isn’t, then suggest why that might be so.

22.7 Other

Printing out a spreadsheet with formulas shown does not count as showing
your calculations; the reader should not have to be familiar with spreadsheet
syntax to make sense of results.

You must discuss at least one source of systematic error in your report, even
if you reject it as insignificant, in order to indicate how it would affect the
results.
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Introduction to Spreadsheets

23.1 Theory

Some of the information here will be specific to Microsoft Excel, but most
should be similar for other spreadsheets as well.

23.1.1 Formulas

The value in using cell references instead of numerical values is that if the
numbers change, the calculations are performed automatically. In a lab this
allows you to set up the spreadsheet and then simply type in new data to see
new results. If you do things properly, it is even easy to change the number
of data points after the fact.

Never use a number where you can use a cell reference.

23.1.2 Functions

Functions perform commonly used tasks on a cell or block of cells and return
the result in a cell.1 Some of the most common ones follow.

Common Functions

For blocks of cells

1There are functions which return a block of cells, which don’t fit with the mathematical
notion of a “function”, but we won’t get into those here.
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• average()

• count() counts the non-empty cells

Always use the count function instead of typing in the number of data points
so you can change the number later if needed without editing formulas.

• stdeva() determines the sample standard deviation

• max() finds the maximum

• min() finds the minimum

For individual values

• sqrt() square root

• abs() absolute value

• if() allows a cell to have a value depending on a condition

Using the Built-in Automation

In you aren’t sure what parameters are needed by a function, or in what
order, you can simply type in the function until after the left bracket and
then you will be prompted for what needs to be filled in.

23.1.3 Copying Formulas and Functions: Absolute and
Relative References

Never copy values from one part of the spreadsheet to another where a cell
reference could be used instead.

Relative References

The value of using formulas in a spreadsheet is that calculations can be easily
repeated. One of the ways this happens is by copying formulas to be applied
to different data. When a formula is copied from one location to another,
references are usually changed relative to the move. In other words, if a
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formula is copied from one cell to the next one on the right (ie. where the
column address increases by one), then cell references within the formula
will have their column addresses increased by one as well. If a formula is
copied from one cell to the one above (ie. where the row address decreases
by one), then cell references within the formula will have their row addresses
decreased by one as well.2

Figure 23.1 gives an example of both absolute and relative references and
how they affect copying. If the formula given was in the coloured cell, and
then copied to the cell shown, the references in the formula would become
the ones indicated.

A2

=average(A2:A5) HHHj

D4

=average(D4:D7)
B10

=average($B10:B$13) PPPq

E11

=average($B11:E$13)

Figure 23.1: Effects of absolute and relative references when copying

Absolute References

Sometimes you don’t want cell references in a formula to change when it
is copied. In this case what you do is to put a $ before the part of a cell
reference which you do not want to change. in other words, if you have a
formula with a reference to B13 and you do not want the B to change when
you copy, then change the reference to $B13. If you don’t want the 13 to
change when you copy, then change the reference to B$13. If you don’t want

2Note that when you move a cell, none of the references inside it are changed.
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either B or 13 to change, then change the reference to $B$13. (In other
words, you make a number a constant by referring to it like $B$13).

23.1.4 Pasting Options

Sometimes when you copy a formula, you don’t want to copy everything
about it. For instance, sometimes you just want to get the numerical result.
In a spreadsheet, you can’t choose what to copy, but you can choose what to
paste. When you go to paste something, you can Paste Special and choose
to paste whatever you want. Thus you can paste strings or numbers and not
formulas, and you can include formatting (boxes, colours, fonts, etc.) or not.

Always copy formulas from one part of the spreadsheet to another instead of
retyping to avoid making mistakes.

23.1.5 Formatting

You can do many things to a cell or block of cells to change its appearance,
such as putting boxes around it, changing fonts or how numbers are displayed,
changing the background colour, etc.

Format after you’re done copying formulas, etc., to avoid having to always
Paste Special to preserve style information.

23.1.6 Print Preview

When printing a spreadsheet, there are lots of options to make the result
more readable. Doing a print preview allows this. You can

• turn the grid off.

• include page headers and footers (or not)

• scale to fit the page

Doing a page preview also helps you figure out which page number(s) you
need to print, since it may not be obvious.

Preview the printing to avoid wasting reams of paper printing out stuff you
don’t want.
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23.2 Recap

By the end of this exercise, you should know how to use spreadsheet functions
to calculate the :

• mean

• standard deviation

• standard deviation of the mean
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Graphing and Least Squares
Fitting in Excel

24.1 Theory

24.1.1 Graphing

Graph Type

The graph type mainly used by scientists is an x-y graph1. Do not choose a
line graph!

Colour

The default grey background in many spreadsheets just looks bad in graphs;
it obscures the data and serves no purpose. Turn the background colour off!

Gridlines

Grid lines should be either removed or in both dimensions. Gridlines in one
direction only look odd on an “xy” graph. Turn the gridlines off!

1 As long as there is some mathematical relationship between the variables, then an
x-y graph illustrates the relationship. However, if the independent variable does not have
a numerical value, then this doesn’t apply. For instance, if you were graphing reaction
time for men and women, then a bar graph would be the logical choice, since there’s no
numerical relationship between “men” and “women”.
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Text

The main text of a graph consists of x− and y− titles, a main title and
perhaps a sub–title. All of these may be set in Excel.

Series

Excel allows you to plot several different “series” of (x, y) data. Each series
can be customized, with choices for many things, including the following:

• Patterns

Each series can be plotted with lines, symbols, or both.

Do not connect the points like a dot-to-dot drawing!

Do not use an arbitrary function just because it goes through all the data
points!

• Markers

There are many possible symbols which can be used for each series.

• Lines

There are several line types available for each series.One important fact
about how lines are used to connect points in a series; all points in a
series are joined by lines, unless the line for that series is turned off.

In science, it is almost always wrong to have a dot-to-dot drawing. It is
also wrong to have a curve which has no mathematical significance. For this
reason, data points should not be connected by either line segments or a
curve like a polynomial which is made to pass through each data point. The
only line or curve which should be shown is the result of a fit which is based
on some theoretical mathematical relationship.

Matching up x and y Values

When you create an xy graph is created in Excel, you don’t input data values
as (x, y) pairs. Instead you select series for each of x and y. The way the
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A2

x1

D4

∆x1

B10

y1 E11

∆y1

Figure 24.1: Spreadsheet layout with series for x, y, and error bars

individual x and y values are associated is by where they occur in their
respective series.

In Figure 24.1 you can see that the 5th point in each series is highlighted.
Even though the series all start in different rows and columns, since the
number of cells in each is the same, corresponding values can be considered
to be related. (If a cell is blank, then the corresponding point or error bar
will not be plotted.)

Error Bars

In Excel, when you choose custom error bars, you can choose series for both
x and y, and even potentially different series for the + and − directions.
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You don’t necessarily have to put markers on the ends of the error bars; the
value in doing so is to make it clear that you’re not just using “+” symbols
for plotting the data points. Also, if you are including a grid on your graph,
error bars without markers on the end may be hard to distinguish. However
if the error bars will be clearly identifiable without markers, you don’t need
to use them.

24.1.2 Least Squares Fitting

The point of plotting a graph in an experiment is usually to extract infor-
mation from the graph; often the data is plotted in such a manner that the
model being tested suggests that the data should fit a straight line. If it
does, then getting the slope and y intercept of the line of best fit along with
their associated uncertainties is necessary. One of the two usual ways to de-
termine the uncertainty in a graphical quantity is to calculate the standard
error. (The other involves finding lines of maximum and minimum slope.)
The following sections discuss using Excel to do least squares fitting and to
calculate standard errors.

Determining the equation of the line by formulas

In Chapter 19, “Graphs and Graphical Analysis”, the lab manual explains
how to calculate a least squares fit to a set of data. This can be done in Excel
by creating additional cells corresponding to each data point which contain,
respectively, x2, y2 and xy. At the end of the data, these quantities can be
totaled to give the sums necessary to do the least squares fit.2

2You may notice that a particular quantity comes up a lot. It is

N
(∑

x2
i

)
−
(∑

xi

)2

(24.1)

It only takes a couple of lines of algebra to show that this equals

N (N − 1) σx
2 (24.2)

where σx
2 is the sample standard deviation of the x values.
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Determining the equation of the line using LINEST()

Excel contains a function to do least squares fitting. Unfortunately if pro-
duces a bunch of numbers without indicating what is what. It also has to be
configured to do things the way we want. Make sure to configure it to give
extra statistics.

When using LINEST() to calculate the least squares fit, always set it to
calculate the y-intercept, even when you expect it to be zero! This gives you
important information about the data.

Comparing the result given by the least squares fit using your formulas
with your regression output should indicate what several of the quantities
are.

(If you use LINEST() to do least squares fitting for a lab report, quote
the quantities given with the names used in the lab manual. The unidentified
block of cells given by Excel is not very meaningful.)

Determining uncertainties in the slope and y-intercept

Case I: Maximum and minimum slopes If the error bars are large
enough, then the line of best fit should go through all of the error bars. In
this case, there will be two data points which determine coordinates for a
line of maximum slope which crosses all of the error bars. Consider the case
for positive slope:

If we label two points x1 and x2, where x1 < x2, then we can see from
Figure 24.2 that the steepest line which touches the error bars for both x1

and x2 is the line between (x1 +∆x1,y1−∆y1) and (x2−∆x2,y2 +∆y2). The
slope of this line will then be

mmax =
(y2 + ∆y2)− (y1 −∆y1)

(x2 −∆x2)− (x1 + ∆x1)

and then the y-intercept is given by

bmin = (y1 −∆y1)−mmax(x1 + ∆x1) = (y2 + ∆y2)−mmax(x2 −∆x2)

Similarly the line with the least slope which touches the error bars for both
x1 and x2 is the line between (x1 −∆x1,y1 + ∆y1) and (x2 + ∆x2,y2 −∆y2).
The slope of this line will then be

mmin =
(y2 −∆y2)− (y1 + ∆y1)

(x2 + ∆x2)− (x1 −∆x1)
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For negative slope

For positive slope

( , )

( , )

( , )
( , )

Figure 24.2: Maximum and Minimum Slope Coordinates from a Point
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and then the y-intercept is given by

bmax = (y1 + ∆y1)−mmin(x1 −∆x1) = (y2 −∆y2)−mmin(x2 + ∆x2)

The case for a negative slope is shown in Figure 24.2; the analysis is left to
the student.

The points for the maximum and minimum slope will not always be the end-
points on the graph.

Index function in Excel To calculate the slope and y-intercept in
Excel from a block of data, we can use the index function. Its syntax is as
follows:

• index(reference, row number, column number)

• reference is the cell range to look in

• row number (starts at one)

• column number (starts at one)

So if we have a data set of 6 values where the x values start in A2, and the
∆x values start in D4, then we can get

x2 + ∆x2

by the formula

= INDEX(A2 : A7,2,1) + INDEX(D4 : D9,2,1)

(Note that the only difference is in which block of data to use.) You’d
probably write the formula as

= INDEX($A$2 : $A$7,2,1) + INDEX($D$4 : $D$9,2,1)

so that you could copy it and still refer to the same blocks of data.

Case II: standard errors If the error bars are small enough, then the
points will be scattered in such a way that no line can be drawn which
crosses all of the error bars. In this case, the uncertainties in the slope and
y-intercept reflect the scatter of the points. In this case, the uncertainty in
the slope and y-intercept will be calculated using the standard errors in
the slope and y-intercept, in much the same way that the uncertainty for an
average value is calculated using the standard error of the mean.

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

136 Graphing and Least Squares Fitting in Excel

24.1.3 Displaying Lines

Unless you are going to give the equation of a line or curve, do not show it
on a graph!

Plotting arbitrary lines

To display a line on the graph, such as a best fit line, one can use a series
which has not yet been used. When one knows the equation of a line, all one
needs is two endpoints so that a line can be drawn between them. To allow
this, include 2 values at the end of your x series, xmin and xmax which are
the minimum and maximum values from the x data, respectively. Placing
the y values calculated from the line equation in the corresponding cells of
another series will allow a line to be plotted between those points. (Set the
format for that series to lines only.)

Using “trendline”

There is a built-in feature called trendline which allows you to display various
fits to data. A linear trendline is, in fact, a least squares fit. Unfortunately,
this feature does not automatically display the parameters for the fit, so it’s
not as much use as it could be.

24.2 Recap

By the end of this exercise, you should understand the following terms:

• linear graph

• error bars

• least squares fit

• correlation coefficient

• large scatter of data points

• small scatter of data points
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In addition, you should, using Excel, be able to:

• plot a linear graph

• add error bars

• perform a least squares fit

• show the least squares fit line on the graph with the data

You should also be able to

• determine whether the points on a graph classify as either “small” or
“large” scatter, and calculate graphical uncertainties appropriately in
either case;

• compare different linearizations of the same function and to explain
why one may be preferred over others.
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Plotting Curves Using a
Spreadsheet

25.1 Theory

Consider the data shown in Figure 25.1.
First of all, the graph does not have error bars. However it it also not smooth.
Dot-to-dot drawings do not usually belong in scientific reports; smooth curves
are usually more appropriate. The following discussion should help you to
use a spreadsheet to produce non–linear plots.

25.1.1 Displaying Curves

You have previously seen how a a line can be drawn by simply connecting its
endpoints. Similarly, a curve can be approximated by a series of very short
line segments between points along the curve. If the points are close enough,
the line will look smooth. If we wish to plot a curve in a spreadsheet, proceed
as follows:

1. Instead of just using two values, xmin and xmax , for an x–series, create
a series of values xi, i = 0 . . . N where

xi = xmin + i

(
xmax − xmin

N

)
so that

x0 = xmin
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Figure 25.1: Logarithmic Fit the Wrong Way

and
xN = xmax

and for each point
yi = f(xi)

Note that even though the x values for the first and last point are taken
from the original data, the y values are not, since the purpose is to find
points on the curve.

A value of 100 for N should be sufficient to make a smooth curve. If
not, make it bigger. You can try making it smaller if that many points
aren’t needed.

2. For each of the xi, calculate the corresponding yi value from the curve
equation and add this series to the graph.

3. Remove the markers and add lines for this series. All points in this
series will thereby be joined with line segments. You should be able to
produce a graph such as in Figure 25.2. (Error bars have been left off
for simplicity. They can be produced in the usual way.)

Note that in the graph of Figure 25.2, none of the data points actually fall
on the curve. This is often the case.
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Figure 25.2: Logarithmic Fit the Right Way

25.1.2 Piecewise Defined Functions

In some cases, a curve must be made from data which must be fit to different
equations in different regions. In this case the trick comes in trying to join
the two fit equations smoothly. In this case,

f(x) =

{
F1(x), if x ≤ x1;

F2(x), if x ≥ x2.

where x2 > x1. To make the function f(x) continuous, we require that

f(x1) = F1(x1)

and

f(x2) = F2(x2)

To produce a smooth fit, then in addition we require that

f ′(x1) = F1
′(x1)
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and

f ′(x2) = F2
′(x2)

These 4 equations can be solved exactly by a polynomial in 4 unknowns, i.e.
an equation of the form

f(x) = αx3 + βx2 + γx + δ

and therefore
f ′(x) = 3αx2 + 2βx + γ

To solve this, we need to set up a system of equations as follows: If we let

A =


x1

3 x1
2 x1 1

x2
3 x2

2 x2 1
3x1

2 2x1 1 0
3x2

2 2x2 1 0


and

B =


F1(x1)
F2(x2)
F1

′(x1)
F2

′(x2)


Then it should be clear that

AX = B

or

X = A−1B

where

X =


α
β
γ
δ


(F1

′(x1) can be determined by using x1 and the fit point immediately to its
left, and F2

′(x2) can be determined by using x2 and the fit point immediately
to its right.) This system can then be solved using the matrix invert and
multiply features of a spreadsheet.
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Note: This will produce a smooth graph; whether it produces an accurate
graph remains to be seen, (although smooth transitions are more common
than others). This should produce a graph such as in Figure 25.3. Error bars
have not been shown so that the smoothness of the curve can be seen easily.
As before, error bars should be included unless you are specifically told to
omit them.

Figure 25.3: Piecewise Defined Function

25.2 Recap

By the end of this exercise, you should understand how to display any curve
on a spreadsheet graph.
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Goal Seek Spreadsheet Feature

26.1 Theory

Often when dealing with numerical data, one will be faced with functions
which are non–invertible. Assume

y = f(x)

If f(x) is invertible, then there exists a function f−1(x) such that

x = f−1(y)

so that given a value y0, we can calculate the value of x0 which corresponds
to y0

1 in the original function; ie.

y0 = f(x0)

In many cases, an inverse function does not exist. This can happen for a
variety of reasons:

1. The function is many–to–one. Many x values give the same y value, so
there is not a unique inverse. (eg. y = sin(x))

2. The function is sufficiently complex that no simple inverse exists. (eg.
y = x + ex; y′ > 0 everywhere, but no simple inverse function exists.)

1The value of x for which f(x) = 0 is known as a root of f(x).
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To find the x value which produces a given y value, we must solve the
equation

y0 = f(x)

That is, we must “find the value of x which makes the equation true”. Solving
this equation is the same as solving the equation

f(x)− y0 = 0

Various mathematical algorithms exist for finding good numerical approxi-
mations to these solutions, and several spreadsheets, including Excel, have
one of these built in.

Although there may be many possible solutions to the above equation, a
tool such as the spreadsheet will only produce one at a time. In fact most
such tools will only give one solution, and the one given will depend on the
starting value used. The starting value is a value for x which should be
somewhere in the vicinity of the solution being approximated. The caveat
is, the more you know about the expected solution(s), the easier it is (they
are) to find.

Consider the function shown in Figure 26.1. The desired solution is the
x–value where the function crosses the x–axis.

One algorithm for solving an equation F (x) = f(x) − y0 = 0 is the
Newton-Rhapson or Newton’s method.2 The algorithm starts with an
initial value x0, the “starting value”, and computes a sequence x1, x2, x3 . . . xn

where xn+1 is determined in the following way:
The function F (x) = 0 is approximated by its tangent3 at the point

(x0, F (x0)). The equation of the tangent is

F (x0) + (x− x0)F
′(x0) = y

Then x1 is the point where the tangent line intersects the x–axis and x1 is
taken as the next approximation to the solution. Thus, for determining xn+1,
we get the equation

F (xn) + (xn+1 − xn)F ′(xn) = 0

2Other methods include the bisect method which works if you know one value of x for
which f(x) > 0 and another for which f(x) < 0.

3If we can’t or don’t want to figure out the equation for F ′(x), we can approximate
it by determining the secant line of F (x) at that point. This is the line which joins
(x, F (x)) and (x + δ, F (x + δ)), where δ is a very small number.
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?

x0

F (x0)

6

x1

F (x1)

?

x2

Figure 26.1: Searching Near Root
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6

x0

F (x0)

6

x1

F (x1)

6

x2

Figure 26.2: Searching Near Local Minimum

Solving for xn+1, we get the equation

xn+1 = xn −
F (xn)

F ′(xn)

The algorithm stops when
∣∣∣− F (xn)

F ′(xn)

∣∣∣ is less than the largest error one is willing

to permit in the root.

By starting at point x0, Newton’s method will give us a succession of
values which will eventually converge to the solution. However, consider a
slightly different function, using the starting point shown in Figure 26.2.

In this case, the algorithm may easily get “stuck” to the left of zero
and never find the solution, but rather converge to the location of the local
minimum. It is even possible for the results to diverge, and get farther from
the solution at each iteration!
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26.1.1 Uncertainties in Parameters

One difficulty with using this method for inverting a function is that we
cannot easily generate standard errors in the independent variable. While
there is no general way to do this, we can get some idea of the sensitivity of
the independent variable to changes in function paramter values by varying
the paramter values within their experimental uncertainties. This can be
done as follows, for a function with three parameters A, B, and C:

1. Set up new variable values in the spreadsheet so that, for instance,

A′ = A + 2(rand()− 0.5)(∆A)

(The same can be done for B and C.) (The rand() function of the
spreadsheet gives a random value between 0 and 1, so subtracting 0.5
from it gives a random value between −0.5 and +0.5, and multiplying
this by 2 gives a value between −1 and 1 ; thus we get a value between
A−∆A and A + ∆A.)

2. Now you will see that any time you recalculate, all of those values (and
thus the results) will change as well.

3. Copy the values A′, B′, and C ′ and use the Paste Special command
to paste the values as numbers, not formulas into somewhere in the
spreadsheet.

4. Change the setup of goalseek to point to the values you just copied
instead of the original A, B, and C.

5. To see the effect on the parameters calculated, you will need to repeat
the cut-and-paste step and re-run goal seek.

6. Do this 5 or 10 times and use the ranges in the independent variable
values as estimates for the uncertainties in the independent value.

(You might wonder why we don’t just change all of the values to their values
with uncertainties added, and then see how much that changes the answer,
thus giving us the maximum uncertainty. The problem is that in complicated
calculations, the effects may cancel each other out, so there is no apparent
uncertainty. If we were subtracting the numbers, this is obvious.)
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26.1.2 Example: Non-Invertible Functions

Suppose we have a function

y = Ax2 + B/x

and we want to find the value of x for which y = 5. If we want to find the
value of x such that

5 = Ax2 + B/x

then that is the same as finding the value of x for which

5−
(
Ax2 + B/x

)
= 0

In this case, A and B are constants, and we wish to find the value(s) of x for
which this is true, so A and B are our “data”, and x is our “result”.

1. Set up a cell containing the formula

5−
(
Ax2 + B/x

)
= 0

where A, B, and x are references to variable cells. The first two are
parameters in your equation, and the third is your “starting value” for
x. Provide values for all of these cells.

2. Set up goal seek with x as your variable, and the cell containing 5 −
(Ax2 + B/x) as your formula cell. Make your target value 0.

3. Run goal seek a few times to see if your results converge. If your results
do not converge, try other starting values.4

To get some idea of the sensitivity of the parameters to changes in data
values by varying the data within its experimental uncertainty, proceed as
follows. (Note in this case the variables are the parameters A and B.)

1. Create new data values above so that, for instance,

A′ = A + 2(rand()− 0.5)(∆A)

and
B′ = B + 2(rand()− 0.5)(∆B)

4If you know enough about the function to be sure that it has a root, then there should
be some starting value which will work. You just have to find it.
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2. Now you will see that any time you recalculate, those two values will
change as well. Copy these A′ and B′ values and use the Paste Special
command to paste the values as numbers, not formulas into another
part of the spreadsheet.

3. Change your formula cell to point to these new copied A′ and B′ values
instead of the previous A and B. Now the the solution, x will depend
on the uncertainties in A and B.

If you don’t point to the pasted values, then the random variation will be
happening while goalseek is running, which could make your results very
unpredictable.

4. To see the effect of the uncertainties on the parameters calculated, you
will need to repeat step 2 above and then re-run goal seek.

5. Do this 5 or 10 times and use the range in the solution as an estimate
for the uncertainty.

26.1.3 Goal Seek in Excel TM

Goalseek is a tool in Excel, which is simple to use. When you invoke it from
the menu, you will be presented with a dialogue box as shown in Figure 26.3.

� f(x)− y0

� 0
� x

Figure 26.3: Goal Seek parameters

Set cell Select the cell for the modified function.

To value 0
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By Changing Cell Select the cell for the independent variable.

26.2 Recap

By the end of this exercise, you should know how to use the goalseek function
to work with non-invertible functions.
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Solver Spreadsheet Feature

27.1 Theory

At times you will wish to find a maximum or minimum value for a function
over a given range of input values. For instance, given

y = f(x)

one might need to know what value of x maximizes the value of y. If f(x)
is monotonically increasing or decreasing, then the function will have its
maximum value at one of the endpoints of the interval in question. In other
cases, it may be much harder to determine. If the function is continuous,
then the function will have a local maximum or minimum wherever

y′ = 0

These points can be approximated in a similar way to the way roots of a
function are found, as just described. In this case, if we use successive values
of the function to estimate both the first AND second derivatives of the
function at a point, then it is possible to estimate the point at which the
slope will be zero.

There are many numerical algorithms for finding good numerical approx-
imations to these solutions, and Excel Pro has one of these built in.

Although there may be many possible candidates for the solution to the
above equation, the spreadsheet will only check one such candidate, and the
one checked will depend on the starting value given. The starting value
is a value for x which should be somewhere in the vicinity of the candidate
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being approximated. The caveat is, the more you know about the expected
solution(s), the easier it is (they are) to find. (In practice, most functions
are sufficiently well-behaved that there may be at most a handful of possible
candidates, and usually only one. In these cases, such algorithms will usually
do a good job of approximating them.)

To find the x value which maximizes y value, we must optimize the
equation

y = f(x)

That is, we must “find the value of x which gives the maximum (or minimum)
value for y”.

A least squares fit is really just a kind of optimization; it amounts to
finding the values of m and b (for a linear fit) which minimize the sum of
squares error.

In this case, the function to be minimized is

S = S(m, b)

This is a function of 2 variables, and we want to find the values of both m
and b which minimize S.

For a non-linear fit, then the equation for S and thus the parameters
involved would be different.

27.1.1 Uncertainties in Parameters

One difficulty with using these methods for fitting is that we cannot easily
generate standard errors in the fit parameters. While there is no general
way to do this, we can get some idea of the sensitivity of the parameters to
changes in data values by varying the data values within their experimental
uncertainties. This can be done for a function with parameters A and B as
follows:

1. Replace the variable values in the data so that, for instance,

xi
′ = xi + 2(rand()− 0.5)(∆xi)

where the xi are the given values with uncertainties in them. (The same
can be done for y values.) (The rand() function of the spreadsheet
gives a random value between 0 and 1, so subtracting 0.5 from it gives
a random value between −0.5 and +0.5, and multiplying this by 2 gives
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a value between −1 and 1 ; thus we get a value between xi −∆xi and
xi + ∆xi.)

2. Now you will see that any time you recalculate, all of those values (and
thus the results) will change as well.

3. Copy these xi
′ and xi

′ values as values to another part of the spread-
sheet.

4. Change your formula cell to point to these new copied xi
′ and xi

′ values
instead of the previous xi and yi. Now the the solution A and B values
will depend on the uncertainties in x and y.

5. To see the effect on the parameters calculated, you will need to re-run
the solver.

6. Do this 5 or 10 times and use the ranges in the parameter values as
estimates for the uncertainties in the parameters.

(You might wonder why we don’t just change all of the data values to
their values with uncertainties added, and then see how much that changes
the answer, thus giving us the maximum uncertainty. The problem is that in
complicated calculations, the effects may cancel each other out, so there is no
apparent uncertainty. If we were subtracting the numbers, this is obvious.)

27.1.2 Solver Example: Least Squares Fitting

Getting the parameter values

Consider the data in Table 27.1.
In this case, we want to do a non-linear fit. Specifically, we wish to

minimize the value of S where

S = S(A, B)

where
S =

∑
(ŷi − yi)

2

At first glance, S does not seem to depend on A and B. However, if we
expand the above equation we get

S =
∑(

Axi
2 + B − yi

)2
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i xi yi ŷi = Axi
2 + B (ŷi − yi)

2

1 0.40 0.00 0.28 0.08
2 0.77 2.00 1.46 0.29
3 1.35 2.70 3.32 0.38
4 1.72 4.30 4.50 0.04

S=
∑

(ŷi − yi)
2 0.79

Table 27.1: Least Squares Fit data

since
ŷi = Axi

2 + B

Note that if we change A and /or B, then the values of ŷ will change and
thus S will change also.

If we set up a spreadsheet like Table 27.1, then one can vary A and
B manually and observe the changes in S. Having done so, it is easy to
automate the process using the solver in the spreadsheet.

Note also that we could have used any function in place of the equation
y = Ax2 + B in the fourth column above, and the calculation of S would
remain the same. Thus it now becomes easy to do least squares fits of non-
linear functions as well as linear ones.

1. Set up a cell containing the formula∑
(ŷi − yi)

2

where ŷi, and yi, are references to variable cells.

2. Set up the solver with A and B as your variables, and the cell containing∑
(ŷi − yi)

2 as your solution cell. Configure the solver to minimize this.

3. Run the solver a few times to see if your results converge.

27.1.3 Getting the parameter uncertainties

To get some idea of the sensitivity of the parameters to changes in data
values by varying the data within its experimental uncertainty, proceed as
follows. (Note in this case the variables are the actual data point coordinates
themselves.)
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i original xi ∆xi original yi ∆yi xi
′ yi

′

1 0.40 0.01 0.00 0.05 0.39 0.04
2 0.77 0.02 2.00 0.05 0.76 2.03
3 1.35 0.03 2.70 0.05 1.36 2.71
4 1.72 0.05 4.30 0.05 1.7 4.34

Table 27.2: Finding parameter sensitivities

1. Make new columns of data so that, for instance,

xi
′ = xi + 2(rand()− 0.5)(∆xi)

and

yi
′ = yi + 2(rand()− 0.5)(∆yi)

as shown in Table 27.2.

2. Now you will see that any time you recalculate, all of those values will
change as well. Copy these xi

′ and yi
′ values and use the Paste Special

command to paste the values as numbers, not formulas into somewhere
in the spreadsheet.

3. Change your formulae for (ŷi − yi)
2 so that it is these new values for

yi
′ are used instead of the yi values from before.

If you don’t point to the pasted values, then the random variation will be
happening while the solver is running, which could make your results very
unpredictable.

4. Run the solver. Now the SSE will depend on the uncertainties in x and
y.

5. To see the effect of the uncertainties on the parameters calculated, you
will need to repeat the cut-and-paste and then re-run the solver.

6. Do this 5 or 10 times and use the ranges in the parameter values as
estimates for the uncertainties in the parameters.
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27.1.4 Solver in Excel TM

Solver is an add-in tool in Excel, which is simple to use. To be able to use
it, do the following (in Excel 2007):

1. Click on the “Orb”; (i.e. the office icon)

2. Click on the “Excel options” button at the bottom of the dialog.

3. Select “add-ins”.

4. Select “Solver add-in”.

It will then show up under “Analysis” on the “Data” tab.

When you invoke it, you will be presented with a dialogue box as shown
in Figure 27.1.

-SSE

-min

��:

A,B,
C, etc.

Figure 27.1: Solver parameters

Set Target Cell In our example of a least squares fit, this would be the
SSE

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

27.1 Theory 159

Equal To There are three choices here:

• min

• max

• value

In the case of the least squares fit, we would like to minimize the SSE.

By Changing Cells All of the parameters of our fit need to be changed
in order to find the solution.

Buttons

Solve

Options There are some options you can choose, which are indicated
by a dialogue box as shown in Figure 27.2.

Figure 27.2: Solver options
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Max Time

Iterations

Precision

Tolerance (%)

Buttons

OK There are other options about the type of algorithm used; usually
the default is fine. You can try others if you wish.

When the solver is finished, you should see a dialogue box as shown in
Figure 27.3.

Figure 27.3: Solver results

Buttons

Keep Solver Solution

Restore Original Values

OK
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27.2 Recap

By the end of this exercise, you should know how to use the solver function
to optimize functions.
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9Chapter 28

Sketching Functions and
Extracting Parameters

28.1 Introduction

Previously you learned how to linearize functions and then use least squares
fitting to get parameters from the graph. Then you learned how to use
spreadsheet features to do least squares fitting with non-linearized functions.
However, to do that it is necessary to have reasonable starting values for the
parameters involved. Now you are going to learn how to do that.

In first year calculus, you should have learned about sketching functions.
This will be discussed now because of the way that parameters for functions
can be extracted from plots of observed data; in other words, knowing how
certain parameters affect the graph of a function allows one to determine
those parameters from the graph of a function.

28.1.1 Critical Points

A critical point of a function occurs where the slope is zero. In other words,

df(x)

dx
= 0

If a graph of actual data has a critical point, then this can be used according
to the equation above. (Critical points also occur where the function is
undefined. These may be observable as well.)
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28.1.2 Limits and Asymptotes

The limits of a function as x →∞ or any other point will often be useful if
either of the following is true:

• function has a limit; in this case, if we can observe values of the function
near enough to the limit, we can approximate the limit. Keep in mind
that for one function, there may be useful limits as you approach a
variety of x values, so you may need to do this several times to extract
as much information as possible.

• function has an asymptote; an asymptote is just a special kind of limit.
In this case, for a function f(x), an asymptote exists if

lim
x→∞

f(x)− (mx + b) = 0

for some choice of m and b. If they exist, then m and b can be found
as follows:

1. Calculate m by using the fact that

lim
x→∞

df(x)

dx
= m

ie. See if you can observe the data approaching an asymptote. If
so, then you can draw in the line and calculate the slope m.

2. Calculate b according to the equation above, using this value of
m. In other words,

lim
x→∞

f(x)− (mx + b) = 0

thus
lim

x→∞
f(x)−mx− b = 0

and so
lim

x→∞
f(x)−mx = b

ie. extrapolate the asymptote you have drawn to where it crosses
the y axis and determine b. (You don’t actually need to do this;
given any two points on a line you can calculate both m and b.)

Thus if asymptotes exist, they can be used to determine parameters of
the original function.
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28.1.3 Roots

If a function has zeroes, i.e. points where f(x) = 0, then these can also be
useful if they can be observed in the data. (For that matter, if the function
takes on any fixed value then this can be used.)

28.1.4 Modified Functions

At times, some of the above rules will be useful if applied to a modified version
of the function; for instance f(x) may not have an asymptote, but ln (f(x))
might. With practice you should get better at spotting these situations.

28.1.5 Substitution

If all but one of the parameters for a function can be estimated by using the
previous methods, then the final parameter can be estimated by substituting
the other values into the equation for a single data point.
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9Appendix A

Information about Measuring
Instruments

Fill this in as you use new measuring instruments so you will have a reliable
reference. Put frequently used instruments in Table A.1 and experiment-
specific ones in Table A.2.

ref. # measuring instrument precision measure range units

A1 vernier caliper

A2 micrometer caliper

A3 stopwatch

A4 GL100R balance

A5

A6

Table A.1: Measuring instrument information

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

168 Information about Measuring Instruments

ref. # measuring instrument precision measure range units

B1 spring scale A

B2 spring scale B

B3

B4

B5

B6

B7

B8

B9

B10

B11

B12

B13

B14

B15

Table A.2: Measuring instrument information (continued)
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9Appendix B

Common Uncertainty Results

Following are some common results about uncertainties which you may find
useful. If there are others which you feel should be here, inform the lab
supervisor so that they may included in future versions of the lab manual.

∆(x) = (∆x)

∆(xn) ≈ n|x|n−1∆x

∆(sin xR) ≈ |cos xR| (∆x)R

∆(tan xR) ≈ (sec xR)2(∆x)R

where xR denotes x in radians.

∆ ln x ≈ 1

x
∆x =

∆x

x

∆xy ≈
∣∣xy−1y

∣∣∆x + |xy ln x|∆y

∆ y
√

x ≈
∣∣∣∣x( 1

y
−1) 1

y

∣∣∣∣∆x +
∣∣∣x 1

y ln x
∣∣∣ ∆y

y2

∆f(x, y, z) ≈
∣∣∣∣∂f

∂x

∣∣∣∣∆x +

∣∣∣∣∂f

∂y

∣∣∣∣∆y +

∣∣∣∣∂f

∂z

∣∣∣∣∆z
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9Appendix C

Common Approximations

Following are some common approximations which you may find useful. If
there are others which you feel should be here, inform the lab supervisor so
that they may included in future versions of the lab manual.

Taylor Series Expansion

f(x + h) =
∑fn(x)

n!
≈ f(x) + hf ′(x)

The following derive from the Taylor series expansions, where x � 1. In
cases where an approximation is given with more than one term, the first
term alone may be sufficient in some cases.

(1 + xn) ≈ 1 + nx

ln(1 + x) ≈ x− x2

2

ex ≈ 1 + x +
x2

2!

The following also assume x is in radians.

sin(x) ≈ x− x3

3!

cos(x) ≈ 1− x2

2!
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9Appendix D

Use of the Standard Form for
Numbers

D.1 Introduction

Learning how to use the standard form is easy; learning when to use it is
a bit harder. Following are some examples which should help you decide
when to use it. It is perhaps easiest to illustrate by comparing results using
the standard form and not using it. Remember the point is to present things
more concisely.

1. Voltage V of 2.941 Volts; uncertainty of 0.4517 Volts

• First round the uncertainty to one significant figure; thus

∆V ≈ 0.4 V

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

V ≈ 2.9 V (when rounded to the same decimal place as the un-
certainty)

• So

V = 2.9± 0.4 V

In this case, scientific notation is not needed.
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2. Mass m of 140.6 grams; uncertainty of 531.7 grams

This is an example of a situation where the uncertainty is larger than
the quantity itself. The process involved is the same.

• First round the uncertainty to one significant figure; thus

∆m ≈ 500 g

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

m ≈ 100 g (when rounded to the hundreds place)

• So

m = 100± 500 g

In this case, scientific notation is needed, because we need to get
rid of the placeholder zeroes. One option would be to write

m = (1± 5)× 102 g

Another option would be to write

m = 0.1± 0.5 kg

Note that this last option is more concise.

3. Diameter d of 0.727 cm; uncertainty of 0.015 cm

• First round the uncertainty to one significant figure; thus

∆d ≈ 0.02 cm

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

d ≈ 0.73 cm (when rounded to the hundredths place)

• So

d = 0.73± 0.02 cm

In this case, scientific notation is not needed, because there are
no placeholder zeroes.

Another option would be to write

d = 7.3± 0.2 mm
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Note that this last option is slightly more concise, since it gets
rid of two zeroes, and puts d in proper form for scientific notation
(even though in this case the exponent would be zero).

4. Time t of 943 s; uncertainty of 29 s

• First round the uncertainty to one significant figure; thus

∆t ≈ 30 s

• Next round the quantity so the last digit displayed is in the same
decimal place as the uncertainty; thus

t ≈ 940 s (when rounded to the tens place)

• So

t = 940± 30 s

In this case, scientific notation is needed, because there are place-
holder zeroes.

One option would be to write

t = (9.4± 0.3)× 102 s

This is in the standard form.

Another option would be to write

t = 9.4± 0.3 hs

However, since “hectoseconds” are not commonly used I would
avoid this (although it is also correct).

Similarly you could write

t = 94± 3 das

Again, since “dekaseconds” are not commonly used I would avoid
this (although it is also correct).1

1I actually had to check on the spelling and notation for dekaseconds and hectoseconds,
so that illustrates how (un)familiar they are.
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9Appendix E

Order of Magnitude
Calculations

To check your conversions, (among other things), do a rough calculation of
your results carrying every value to just 1 significant1 figure. (This is easy to
do quickly on a piece of paper without a calculator, so you can be sure that
calculated results are in the right ballpark.)
For instance, for the “Measuring ‘g’ ” experiment,

h ≈ 5m

t ≈ 1s

Thus

g ≈ 2× 5

12
≈ 10m/s2

Be sure to write out these calculations; that way you’ll be clear on the units
you used, etc. If you make an error and have to correct it, you’ll want a
record of it so you don’t make it when you do the “real” calculations.
Since this result is about what you’d expect, then you know any values in
that range should be reasonable.

E.1 Why use just one or two digits?

There are a couple of reasons:

1If the digit is a 1 or a two, then you may carry 2 figures. If you do this then your
answer should be within about 10% of the value you’d get with a detailed calculation.
This is easily close enough to spot any major errors.
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1. Since we’re only using one data point, instead of all of our values, the
result will be approximate, so the extra digits aren’t needed.

2. When people use calculators, they tend to just automatically write
down any answer without thinking. If they made a typing mistake,
they often don’t notice. So by doing it by hand using only one or two
digits, they keep their brains engaged and are more likely to notice an
error.

E.2 Using the median instead of the average

If you have several measurements of a quantity, do the calculation with one
value instead of averaging all of them. The median is easy to find, and should
be close to the average.

E.3 Order of Magnitude Calculations for Un-

certainties

In a similar way, you can check to see if your uncertainties are reasonable.
In the above example, if

∆h ≈ 5 cm

and
∆t ≈ 0.1 s

then

∆g ≈ g

(
∆h

h
+ 2

∆t

t

)
≈ 10

(
0.05

5
+ 2

0.1

1

)
≈ 10 (0.01 + 0.2)

≈ 10 (0.21)

≈ 0.2 m/s2

This makes sense, and so your detailed uncertainty calculations should pro-
duce something in this ballpark.
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9Appendix F

Derivation of the Least Squares
Fit

Following is a simple derivation of the least squares fit.
Suppose the relationship between the two experimental parameters being

studied is

y = f(x)

where x is the independent parameter which is varied, and y is the dependent
parameter. If f(x) is a polynomial function, or can be approximated by a
polynomial, then the least squares method is a linear one, and it will almost
always give reliable answers. If f(x) cannot be expressed as a polynomial, but
consists of transcendental functions, the least squares method is non-linear,
and may or may not work reliably. In some cases, a change of variables may
result in a polynomial, as in the exponential example above. A function like

y = a +
b

x
+

c

x2

is not a polynomial in x, but it is a polynomial in the variable z = 1/x.
Suppose the functional relationship between x and y is a polynomial of

degree `:

y = a0 + a1x + a2x
2 . . . a`x

` (F.1)

or

y =
∑̀
j=0

ajx
j (F.2)
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and we have a set of N data points xi, yi obtained by experiment. The goal
is to find the values of the ` + 1 parameters a0, a1 . . . a` which will give the
best fit of Equation F.1 to our data points. The first piece of information to
note is that

N ≥ ` + 1 (F.3)

or else we will not be able to make a unique determination. For example, if
` = 1, we need at least two data points to find the equation of the straight
line. In order to make any meaningful statistical statements, however, we
will need even more than ` + 1 points, as we shall see later. A good rule of
thumb: if we wish to fit our data with a polynomial of degree ` in a 95%
confidence interval, we should choose N such that

N − (` + 1) ≥ 10 (F.4)

The idea behind the linear least squares method is to minimize the sum

S =
N∑

i=1

(
yi −

∑̀
j=0

ajx
j
i

)2

(F.5)

S will be a minimum if

∂S

∂ak

= 0 k = 0, 1, 2 . . . ` (F.6)

The result will be ` + 1 linear equations in ` + 1 unknowns:

∑̀
j=0

aj

(
N∑

i=1

xj+k
i

)
=

N∑
i=1

xk
i yi k = 0, 1 . . . ` (F.7)

which can be solved by standard matrix techniques for the unknown coef-
ficients a0, a1 . . . a`. As an example, let us consider the case where ` = 1,
or

y = mx + b

In this case,

S =
N∑

i=1

(yi − (mxi + b))2
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Expanding Equation F.7, we have

b(N) + m

(
N∑

i=1

xi

)
=
∑N

i=1 yi (F.8)

b

(
N∑

i=1

xi

)
+ m

(
N∑

i=1

x2
i

)
=
∑N

i=1 xiyi (F.9)

Then the intercept b and the slope m can be found from Cramer’s rule

b =
(
∑

yi) (
∑

x2
i )− (

∑
xi) (

∑
xiyi)

N (
∑

x2
i )− (

∑
xi)

2 (F.10)

and

m =
N (
∑

xiyi)− (
∑

xi) (
∑

yi)

N (
∑

x2
i )− (

∑
xi)

2 (F.11)
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9Appendix G

More Advanced Uncertainty
(Error) Analysis

Physics is said to be an exact science, but only within a restricted defini-
tion of the word exact. It is exact to the extent that an observable system
can be described in terms of a mathematical model — a set of relationships
between the measurable parameters of the system and its properties and/or
behaviour. Ultimately, the goal of physics is to find the systems which are
capable of being described by mathematical models, formulating those mod-
els, and deducing all of the observable consequences of each. If a particular
model of a physical system is to be accepted as a valid description of that
system, it must be brought to the judgment seat of experiment, and that is
where the term ‘exact science’ cannot be rigorously applied. For although
calculations based on a particular mathematical model can be carried out,
in principle, exactly (i.e., to any number of significant figures), the results of
experimental measurements can never be called exact. For example, imag-
ine attempting to measure the length of a steel bar with a meter stick. At
best, the length can be determined reliably to no better than about 0.5 mm,
and it would be ludicrous to imagine that its length could be determined
to the nearest micron (10−6 meter) with such a device. Thus, the length
of the bar could never be known exactly (to an infinite number of decimal
places). There will always be an uncertainty in the length of the bar due to
the inherent limitation in the precision of the meter stick.

A mathematical model must be tested by deducing the consequences of
setting up the system it represents in a well defined manner, and then ob-
serving its behaviour. Basically, the model will state:
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1. Set up the system with a given set of initial conditions and constraints.

2. Measure the values of such-and-such parameters.

3. Use those values in the equations describing the model, and perform
such-and-such calculations, and compare the experimental results with
the model predictions.

Because there are uncertainties in the set-up and measurements involved in
the experiment, the physicist can only approximate the required conditions
and the values of each parameter. If the experiment is to have any meaning at
all, the effects of these uncertainties on the final results must be determined.
First, the causes of possible uncertainties must be examined and accounted
for — this implies a thorough understanding of both the physics of the system
under study and the physics of the measurement processes used. Second, the
physicist must have the mathematical tools to analyze these things properly.
When the causes and effects of experimental errors have been examined,
the careful experimenter will be able to eliminate (or correct for) some of
them, and to design the experimental method in such a way as to minimize
the effects of the remaining ones. With this background in mind, let us turn
to a quantitative discussion of experimental errors.

G.1 Estimation of the Mean and Standard

Deviation

If a quantity is measured several times, it is usually desirable to end up
with one characteristic value for the quantity. (Quoting all the data is more
precise, but often the original question behind the experiment will not be
adequately answered by the raw data).

There are 3 common values which are extracted from data distributions
which may be considered “characteristic” in certain circumstances. They are
the mean, the median, and the mode. The mean is simply the arithmetic
average, with which you are familiar. The median is the value for which half
of the measurements are greater and half of the measurements are less. The
mode is the most commonly occurring value. Depending on the reason for
the experiment, the choice of a characteristic answer may change.

In a Gaussian, or normal distribution, the above decision is simplified by
the fact that the mean, median, and mode all have the same value. Thus, if
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the data is expected to fit such a distribution, then an average will probably
be a good choice as a quantity characteristic of all of the measurements. The
uncertainty in this characteristic number will be a reflection of the distribu-
tion of the data. Since the variations in the observations are governed by
chance, one may apply the laws of statistics to them and arrive at certain
definite conclusions about the magnitude of the uncertainties. No attempt
will be made to derive these laws but the ones we need will simply be stated
in the following sections.

For random errors which follow a normal distribution the mean and stan-
dard deviation are determined from an infinite set of measurements. This
infinite set is known as the population. The measurement process consists of
obtaining a finite number of samples from the population. Consequently,
one can only estimate the mean and standard deviation of the entire popu-
lation from a limited sample (the set of n measurements). Suppose you have
a sample of n measurements xi. The best estimate of µ0, the population
mean is the sample mean, as shown in Equation G.1.

x =
1

n

n∑
i=1

xi (G.1)

The best estimate of σ0 is given by Equation G.2.

σ =

√√√√ 1

n− 1

n∑
i=1

(xi − x)2 =

√
(
∑n

i=1 x2
i )− nx2

n− 1
(G.2)

Recall that the standard deviation σ is the root mean square deviation
of a single measurement. The sample mean, however, was determined from
n measurements. Hence, x must be a better estimate of the population
mean than any single measurement, and the standard error of the mean or
sometimes the standard deviation of the mean is given by Equation G.3.

α =
σ√
n

(G.3)

The standard deviation also has a standard error associated with it, given
by Equation G.4.

ασ =
σ√
2n

(G.4)
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Thus, when reporting the result of a series of measurements, in first year
you would write x± α(n measurements).

G.2 Confidence Interval for A Single Set of

Data

The above discussion of the standard deviation of the mean is not quite
complete. Specifically, using α as the uncertainty in the calculation of a
mean becomes questionable if the amount of data involved is very small
(usually less than 30 data values is considered small). To correct for this
situation, we can calculate another quantity called a confidence interval
which is based on the standard deviation of the mean but corrects for the
effects of a small number of measurements. First, one must decide what
confidence interval is required, i.e., the desired probability that the population
mean lies within 1 confidence interval of the sample mean. Typically, a 95%
confidence interval is used. This means that if errors are random, one can
assume that the calculated sample mean will differ from the population mean
by less than this amount 95% of the time. To calculate this quantity, one
proceeds as follows:

From the mean and standard deviation, as calculated above, one then
one computes the value of Equation G.5.

∆x = tp,n−1
σ√
n

= tp,n−1α (G.5)

where P is the confidence interval percentage, (typically 95),

p =
1

2

(
1 +

P

100

)
(G.6)

and n − 1 is the number of degrees of freedom. Using the Student’s t
distribution, the value of tp,n−1 is found, and ∆x can be determined. (For a
95% confidence interval, p = 0.975.) When ∆x is less than the instrumental
precision, enough measurements have been obtained, and the standard error
in x is just the instrumental precision. Values of tp,n−1 are listed in the T–
Distribution Table at the end of this section for various confidence intervals
and degrees of freedom.
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G.3 Confidence Interval for Data Fitted to a

Straight Line

When fitting data to a line, we may use the technique of least squares fitting.
If we wish to fit a straight line to data in the form

y = mx + b

then the least squares fit gives values for b and m as in Equation G.7 and
Equation G.8.

b =
(
∑

yi) (
∑

x2
i )− (

∑
xi) (

∑
xiyi)

n (
∑

x2
i )− (

∑
xi)

2 (G.7)

m =
n (
∑

xiyi)− (
∑

xi) (
∑

yi)

n (
∑

x2
i )− (

∑
xi)

2 (G.8)

Once these values for the slope and intercept are determined, the sum of
squares error, S is computed. For the linear case, S can be calculated as in
Equation G.9.

S =
∑

y2
i −m

∑
xiyi − b

∑
yi (G.9)

In order to estimate the uncertainty in each parameter, the standard
deviation σ is computed in Equation G.10.

σ =

√
S

n− 2
(G.10)

The standard error in the intercept is computed in Equation G.11.

αb = σ

√ ∑
x2

i

n (
∑

x2
i )− (

∑
xi)

2 (G.11)

and the standard error in the slope is computed in Equation G.12.

αm = σ

√
n

n (
∑

x2
i )− (

∑
xi)

2 (G.12)

(If done properly, a spreadsheet regression can give all four of the quantities
above.) As in the single data set case, these standard errors should be used
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i xi x2
i xiyi yi y2

i

1 0.1 0.01 0.3 3 9
2 0.2 0.04 0.8 4 16
3 0.3 0.09 1.2 4 16
4 0.4 0.16 2.0 5 25
n

∑
xi

∑
x2

i

∑
xiyi

∑
yi

∑
y2

i

4 1.0 0.3 4.3 16 66

Table G.1: Sample Data

for the uncertainties in the graphical parameters only for cases with about
30 or more data points. When less data is available, confidence intervals
should be used as before. In this case, the 95% confidence interval for the
y–intercept is shown in Equation G.13.

∆b = σ tp,n−2

√ ∑
x2

i

n (
∑

x2
i )− (

∑
xi)

2 = tp,n−2αb (G.13)

and the 95% confidence interval for the slope is shown in Equation G.14.

∆m = σ tp,n−2

√
n

n (
∑

x2
i )− (

∑
xi)

2 = tp,n−2αm (G.14)

where p is calculated as before. (The n− 2 in this case reflects the fact that
we have one less degree of freedom since we are estimating two parameters
instead of one.)

Following is a calculation of the least squares fit and the standard error
of the slope and intercept for some test data. Consider the determination of
the 95% confidence intervals to be an exercise for the student.

First

n
(∑

x2
i

)
−
(∑

xi

)2

= (4)(0.3)− (1)2 = 0.2

and so

b =
(
∑

yi) (
∑

x2
i )− (

∑
xi) (

∑
xiyi)

n (
∑

x2
i )− (

∑
xi)

2 =
(16)(0.3)− (1)(4.3)

0.2
= 2.5

thus

m =
n (
∑

xiyi)− (
∑

xi) (
∑

yi)

n (
∑

x2
i )− (

∑
xi)

2 =
(4)(4.3)− (1)(16)

0.2
= 6.0
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and

S =
∑

y2
i −m

∑
xiyi − b

∑
yi = (66)− (6)(4.3)− (2.5)(16) = 0.2

σ =

√
S

n− 2
=

√
0.2

4− 2
= 0.316228

αb = σ

√ ∑
x2

i

n (
∑

x2
i )− (

∑
xi)

2 = (0.316228)

√
0.3

0.2
= 0.3878298

αm = σ

√
n

n (
∑

x2
i )− (

∑
xi)

2 = (0.316228)

√
4

0.2
= 1.414214

Thus
∆b =

and
∆m =

and so
b = 2.5±

and
m = 6.0±

If the experimenter has some control over the amount of data taken,
the following guidelines should be observed. Determination of the desired
number of measurements is constrained by two factors:

1. the number of measurements of each xi and yi so that the statisti-
cal uncertainties in these are less than the instrumental uncertainties
involved,

2. The number of data points n required so that the uncertainties in the
parameters will produce an uncertainty in the computed yi values com-
parable to the instrumental uncertainties, or

yc
i = b + mxi

so
(∆yc

i )
2 = (∆b)2 + x2

i (∆m)2 + m2(∆xi)
2

Thus, the computed uncertainty in the computed values yc
i should be

comparable to the actual experimental uncertainties.

Obviously, the determination of n is non-trivial, even in the case of a
straight line.
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G.4 Propagation of Errors

Rules for combining errors in calculations were given in first year. At that
time several were given, but they can all be replaced by the two which fol-
low which are simple once you are familiar with multivariate differentiation.
(Actually two slightly different calculations will be shown which will yield
different although generally similar results. The difference reflects whether
or not different errors are assumed to be independent. Both are shown, and
you must learn how to choose which to use in a given situation.) Suppose
we have a quantity y which is a function of the m variables x1, x2 · · ·xm:

y = f(x1, x2 . . . xm)

It can be shown that the standard error in y, α(y), is given by:

α(y) =

√(
∂f

∂x1

∆x1

)2

+ · · ·+
(

∂f

∂xm

∆xm

)2

=

√√√√ m∑
i=1

(
∂f

∂xi

∆xi

)2

(G.15)

where ∆xi is the uncertainty in xi. This equation is valid for uncertainties
which are assumed to be independent. If errors are independent, then it
is unlikely that they will all “add up” in their contribution to the total
error. The standard error takes this into account (and is sometimes called the
probable error since an error outside this range is unlikely.) For example, if
you measure the diameter and mass of a marble, there is no reason to expect
an error in one to affect the other, so when calculating density the standard
error should be used. Alternatively, the maximum error for a quantity y
which is a function of the m variables x1, x2 . . . xm can be used. It is given
by

∆f(x) =

∣∣∣∣ ∂f

∂x1

∆x1

∣∣∣∣+ · · ·+ ∣∣∣∣ ∂f

∂xm

∆xm

∣∣∣∣ =
m∑

i=1

∣∣∣∣ ∂f

∂xi

∆xi

∣∣∣∣ (G.16)

This equation is valid for uncertainties which are assumed to be dependent.
For instance, if you use the same instrument for many measurements, then
any systematic error in the instrument will affect all the same way. This
could happen if you measured the 3 dimensions of a cube with the same
calliper and then calculated the volume. In this case maximum error should
be used.
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As an example, let us suppose that the volume of a cylinder must be
determined from measurements of its length and diameter. The volume is
given by:

V =
πd2l

4
where d is the diameter and l is the length. Suppose 10 measurements of the
diameter and length are made, with the following results:

d = 5.005± 0.007cm

and
l = 10.001± 0.003cm

Then the standard error in the cylinder volume is given by:

α(V ) =
√(

∂V
∂d

∆d
)2

+
(

∂V
∂l

∆l
)2

=

√(
πdl
2

)2
∆d2 +

(
πd2

4

)2
∆l2

Then the volume of the cylinder is 196.762 cm3, and the standard error in
the volume is 0.554 cm3, so the result would be stated as

V = 196.76± 0.55cm3

assuming that the 3rd decimal place was uncertain in our original measure-
ments. Calculating the maximum error for V using the above data would
proceed as follows:

∆V =
∣∣∂V

∂d

∣∣∆d +
∣∣∂V

∂l

∣∣∆l

=
∣∣2πdl

4

∣∣∆d +
∣∣∣πd2

4

∣∣∣∆l

=
(

πd2l
4

)
2∆d

d
+
(

πd2l
4

)
∆l
l

as in 1st year

= 0.61cm3

(In this case, the difference between the two uncertainties is small. Had we
chosen a different example, the difference may have been more pronounced.)
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G.5 References 193

ν t.900 t.950 t.975 t.990 t.995 ν

1 3.078 6.314 12.706 31.821 63.657 1
2 1.886 2.920 4.303 6.965 9.925 2
3 1.638 2.353 3.182 4.541 5.841 3
4 1.533 2.132 2.776 3.747 4.604 4
5 1.476 2.015 2.571 3.365 4.032 5
6 1.440 1.943 2.447 3.143 3.707 6
7 1.415 1.895 2.365 2.998 3.499 7
8 1.397 1.860 2.306 2.896 3.355 8
9 1.383 1.833 2.262 2.821 3.250 9
10 1.372 1.812 2.228 2.764 3.169 10
11 1.363 1.796 2.201 2.718 3.106 11
12 1.356 1.782 2.179 2.681 3.055 12
13 1.350 1.771 2.160 2.650 3.012 13
14 1.345 1.761 2.145 2.624 2.977 14
15 1.341 1.753 2.131 2.602 2.947 15
16 1.337 1.746 2.120 2.583 2.921 16
17 1.333 1.740 2.110 2.567 2.898 17
18 1.330 1.734 2.101 2.552 2.878 18
19 1.328 1.729 2.093 2.539 2.861 19
20 1.325 1.725 2.086 2.528 2.845 20
21 1.323 1.721 2.080 2.518 2.831 21
22 1.321 1.717 2.074 2.508 2.819 22
23 1.319 1.714 2.069 2.500 2.807 23
24 1.318 1.711 2.064 2.492 2.797 24
25 1.316 1.708 2.060 2.485 2.787 25
26 1.315 1.706 2.056 2.479 2.779 26
27 1.314 1.703 2.052 2.473 2.771 27
28 1.313 1.701 2.048 2.467 2.763 28
29 1.311 1.699 2.045 2.462 2.756 29
∞ 1.282 1.645 1.960 2.326 2.576 ∞

Table G.2: Student’s T–Distribution
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Generalized Least Squares
Fitting

H.1 Introduction

Previously you have done curve fitting in two dimensions. Now you will learn
how to extend that to multiple dimensions.

H.1.1 Non-linear

Linearizable

Some equations, such as

y = Ae(Bx)

can be treated fairly simply. Linearize and do a linear least squares fit, as
you have done in the past. (Note: “Least Squares” applies to transformed
quantities, not original ones so gives a different answer than you would get
from a least squares fit in the untransformed quantities; remember in general
the idea of a line of “best fit” is not unique. For example, for the equation
shown, ln y vs. x is linear, so you can do a least squares fit in ln y, but this
will not give the same result as a least squares fit in y, since the sum of
squares of ln y will depend on the data in a different way than the sum of
squares in y.)
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196 Generalized Least Squares Fitting

H.1.2 Linear

General

Some equations, such as this

y = b0 + b1x1 + b2x2 + · · · bkxk

are linear, although in multiple variables. We can create a matrix of inde-
pendent data

A =


x11 x12 . . . x1k

x21 x22 . . . x2k
...

...
. . .

...
xn1 xn2 . . . xnk


from the x values, where xij means variable xj for data point i and form a
vector of dependent data

b =

 y1
...

yn


where yi is the y data for data point i.

This creates a system which can be solved using the “regression” feature
of a spreadsheet. (Be sure to disable the calculation of the y–intercept, as
the first coefficient calculated will be the y-intercept, and standard errors
will be given for each parameter.)

Polynomial

Consider an equation such as this:

y = b0 + b1x + b2x
2 + · · · bkx

k

This is just a special case of the previous situation above, eg. x1 = x, x2 = x2,
x3 = x3, etc. (or x1 = 1/x, x2 = 1/x2 , etc.)

What about fit with skipped orders?
eg. y = a + b/x2 + c/x5

In this case, x1 = 1/x2, x2 = 1/x5.
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H.1.3 Goodness of fit

Often you must choose between different fits because you do not know what
type of equation to use. In this case you want to be able to answer the
question “Which fit is better?”

1. If both fits have the same number of parameters, then the better fit is
the one with the smaller SSE in the same quantity. (In other words,
if you’re comparing a fit in y vs. x to one in ln y vs. x, you will first
have to calculate the SSE of both in y vs. x. If you have linearized
an equation to calculate a fit, you can still use that fit to calculate the
SSE in the original quantity afterward.)

2. One or both of the fits may have some parameters which are not “sta-
tistically significant”; (i.e. lots of parameters close to 0 are probably
meaningless.) How close to 0 is “close enough”?

• RULE: Adding more parameters→ smaller SSE, (however a small
change in SSE may not be significant.) Whether or not the added
parameters are significant can be determined statistically if the fit
is a linear one or one which can be linearized.

The following example illustrates how to do this for a linear fit.

H.2 Example

Consider the data shown in Table H.1 and plotted in Figure H.1. (Error bars
have been omitted for simplicity.)

It should be obvious that some possible equations for a fit to this data
may be polynomials in 1/x.

Some of these are shown in Figures H.2, H.3, and H.4.

1. Do fit with g + 1 parameters (as above); calculate the sum of squares
error and call it SSE1. If you use regression from a spreadsheet, you
can determine SSE from the results. Remember SSE1 = s1

2ν1; in this
case ν1 = n− (g + 1).

This gives us Table H.2 and the resulting graph is Figure H.2

Notice that the curve cannot “bend enough”, and so we will see what
happens if we add another parameter.

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

198 Generalized Least Squares Fitting

x y

100 1
85 2
70 4
50 8
36 15
20 25
10 45

Table H.1: Sample Data

Figure H.1: Plot of Sample Data
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1/x y

0.0100 1
0.0118 2
0.0143 4
0.0200 8
0.0278 15
0.0500 25
0.1000 45

Table H.2: Data for Fit to A + B/x

Figure H.2: Graph of Fit to A + B/x
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1/x 1/x2 y

0.01000 0.000100 1
0.01176 0.000138 2
0.01429 0.000204 4
0.02000 0.000400 8
0.02778 0.000772 15
0.05000 0.002500 25
0.10000 0.010000 45

Table H.3: Data for Fit to A + B/x + C/x2

Figure H.3: Graph of Fit to A + B/x + C/x2
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In our case, to compare the 2 parameter fit to the three parameter fit
we do this by creating a matrix

A1 =


1/x1

1/x2
...

1/xn


and we solve as described earlier.

2. Do fit with k + 1 parameters (as above); calculate SSE2. As above,
SSE2 = s2

2ν2 and in this case ν2 = n− (k + 1).

In our case, we do this by creating a matrix

A2 =


1/x1 1/x2

1

1/x2 1/x2
2

...
...

1/xn 1/x2
n


and repeat.

3. Calculate s3 as follows:

s3 =

√
SSE1 − SSE2

k − g

and let ν3 = k − g.

4. Calculate F as follows:

F =
s3

2

s2
2

If F is big, then include the extra parameters. (In this case, it means
the SSE changed a lot by adding the extra parameters, which is what
would happen if they were really important.) How big is “big”?

5. Look up Fα,ν3,ν2 from a table of the F distribution in a statistics text,
where α determines the confidence interval; typically α = 0.05 for a
95% confidence interval. If the F you calculated is greater than the
table value, then keep the extra parameters. Note: In the table, you
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1/x 1/x2 1/x3 y

0.01000 0.000100 0.00000100 1
0.01176 0.000138 0.00000163 2
0.01429 0.000204 0.00000292 4
0.02000 0.000400 0.00000800 8
0.02778 0.000772 0.00002143 15
0.05000 0.002500 0.00012500 25
0.10000 0.010000 0.00100000 45

Table H.4: Data for Fit to A + B/x + C/x2 + D/x3

are given quantities ν1 and ν2; you should use your calculated value of
ν3 in place of ν1 in the table. Doing it this way keeps the table in the
same form you will find it in a statistics text.

(Note that in some of the figures, the fit curve is not quite smooth, due to
an insufficient number of plotting points used.) It is not immediately obvious
which of the above curves fits the data “best”. We could even go on adding
higher and higher powers of 1/x until we had no more degrees of freedom 1

left, but once we get no significant change, it’s time to stop.
Usually we want to compare two fits; in this example, we will compare 3

fits to illustrate the process more clearly. We will compare 2 fits at a time,
and in each case we will use g+1 2 to denote the number of parameters in the
“smaller” fit, and k + 1 to denote the number of parameters in the “bigger”
fit, so k is always bigger than g.

1The number of degrees of freedom in a fit is the number of data points beyond the
bare minimum for that fit. So, for an average it is n − 1, since only one value is needed;
for a straight line it is n− 2, since two points are needed, etc. In general,

ν = n−m

where m is the number of parameters in the fit to be determined. Note that when you
have no degrees of freedom, you have no idea of the “goodness” of your data, and thus
cannot determine the standard deviation. Once you have even one degree of freedom, you
can do so.

2Why not just g? Because g is the degree of the polynomial, which has g+1 parameters.
For example a polynomial of degree 2, such as Ax2 + Bx + C has 3 parameters, namely
A, B, and C.
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Quantity Value Value Value
A + B/x A + B/x + C/x2 A + B/x + C/x2 + D/x3

s 2.43 1.04 0.78
ν 5 4 3

SSE 29.43 4.31 1.83
A -2.02 -6.45 -9.93
σA 1.37 1.09 1.91
B 488.15 784.5 1156.6
σB 30.56 62.79 189.98
C -2713.14 -12121.37
σC 562.24 4672.18
D 60476.14
σD 29909.81

Table H.5: Comparisson of Fit Parameters

• Note that the SSE gets smaller as the number of parameters increases,
but the change gets smaller.

• Note also that when a parameter is added, all of the previous parame-
ters change as well.

• Even though it is considered “insignificant”, the D parameter is bigger
than all of the rest! (However, note the size of its standard error.
Remember also that it gets divided by x3, which will range in size from
1000 → 1000000.)
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ν2 \ ν1 1 2 3 4 5 6

1 161.4 199.5 215.7 224.6 230.2 234
2 18.51 19 19.16 19.25 19.3 19.33
3 10.13 9.55 9.28 9.12 9.01 8.94
4 7.71 6.94 6.59 6.39 6.26 6.16
5 6.61 5.79 5.41 5.19 5.05 4.95
6 5.99 5.14 4.76 4.53 4.39 4.28
7 5.59 4.74 4.35 4.12 3.97 3.87
8 5.32 4.46 4.07 3.84 3.69 3.58
9 5.12 4.26 3.86 3.63 3.48 3.37
10 4.96 4.1 3.71 3.48 3.33 3.22
11 4.84 3.98 3.59 3.36 3.2 3.09
12 4.75 3.89 3.49 3.26 3.11 3
13 4.67 3.81 3.41 3.18 3.03 2.92
14 4.6 3.74 3.34 3.11 2.96 2.85
15 4.54 3.68 3.29 3.06 2.9 2.79
16 4.49 3.63 3.24 3.01 2.85 2.74
17 4.45 3.59 3.2 2.96 2.81 2.7
18 4.41 3.55 3.16 2.93 2.77 2.66
19 4.38 3.52 3.13 2.9 2.74 2.63
20 4.35 3.49 3.1 2.87 2.71 2.6
21 4.32 3.47 3.07 2.84 2.68 2.57
22 4.3 3.44 3.05 2.82 2.66 2.55
23 4.28 3.42 3.03 2.8 2.64 2.53
24 4.26 3.4 3.01 2.78 2.62 2.51
25 4.24 3.39 2.99 2.76 2.6 2.49
26 4.23 3.37 2.98 2.74 2.59 2.47
27 4.21 3.35 2.96 2.73 2.57 2.46
28 4.2 3.34 2.95 2.71 2.56 2.45
29 4.18 3.33 2.93 2.7 2.55 2.43
30 4.17 3.32 2.92 2.69 2.53 2.42
40 4.08 3.23 2.84 2.61 2.45 2.34
60 4 3.15 2.76 2.53 2.37 2.25
120 3.92 3.07 2.68 2.45 2.29 2.17
∞ 3.84 3 2.6 2.37 2.21 2.1

Table H.6: F–Distribution Table (α = 0.05)
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ν2 \ ν1 7 8 9 10 12 15 20 24

1 236.8 238.9 240.5 241.9 243.9 245.9 248 249.1
2 19.35 19.37 19.38 19.4 19.41 19.43 19.45 19.45
3 8.89 8.85 8.81 8.79 8.74 8.7 8.66 8.64
4 6.09 6.04 6 5.96 5.91 5.86 5.8 5.77
5 4.88 4.82 4.77 4.74 4.68 4.62 4.56 4.53
6 4.21 4.15 4.1 4.06 4 3.94 3.87 3.84
7 3.79 3.73 3.68 3.64 3.57 3.51 3.44 3.41
8 3.5 3.44 3.39 3.35 3.28 3.22 3.15 3.12
9 3.29 3.23 3.18 3.14 3.07 3.01 2.94 2.9
10 3.14 3.07 3.02 2.98 2.91 2.85 2.77 2.74
11 3.01 2.95 2.5 2.85 2.79 2.72 2.65 2.61
12 2.91 2.85 2.8 2.75 2.69 2.62 2.54 2.51
13 2.83 2.77 2.71 2.67 2.6 2.53 2.46 2.42
14 2.76 2.7 2.65 2.6 2.53 2.46 2.39 2.35
15 2.71 2.64 2.59 2.54 2.48 2.4 2.33 2.29
16 2.66 2.59 2.54 2.49 2.42 2.35 2.28 2.24
17 2.61 2.55 2.49 2.45 2.38 2.31 2.23 2.19
18 2.58 2.51 2.46 2.41 2.34 2.27 2.19 2.15
19 2.54 2.48 2.42 2.38 2.31 2.23 2.16 2.11
20 2.51 2.45 2.39 2.35 2.28 2.2 2.12 2.08
21 2.49 2.42 2.37 2.32 2.25 2.18 2.1 2.05
22 2.46 2.4 2.34 2.3 2.23 2.15 2.07 2.03
23 2.44 2.37 2.32 2.27 2.2 2.13 2.05 2.01
24 2.42 2.36 2.3 2.25 2.18 2.11 2.03 1.98
25 2.4 2.34 2.28 2.24 2.16 2.09 2.01 1.96
26 2.39 2.32 2.27 2.22 2.15 2.07 1.99 1.95
27 2.37 2.31 2.25 2.2 2.13 2.06 1.97 1.93
28 2.36 2.29 2.24 2.19 2.12 2.04 1.96 1.91
29 2.35 2.28 2.22 2.18 2.1 2.03 1.94 1.9
30 2.33 2.27 2.21 2.16 2.09 2.01 1.93 1.89
40 2.25 2.18 2.12 2.08 2 1.92 1.84 1.79
60 2.17 2.1 2.04 1.99 1.92 1.84 1.75 1.7
120 2.09 2.02 1.96 1.91 1.83 1.75 1.66 1.61
∞ 2.01 1.94 1.88 1.83 1.75 1.67 1.57 1.52

Table H.7: F–Distribution Table (α = 0.05)
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ν2 \ ν1 30 40 60 120 ∞
1 250.1 251.1 252.2 253.3 254.3
2 19.46 19.47 19.48 19.49 19.5
3 8.62 8.59 8.57 8.55 8.53
4 5.75 5.72 5.69 5.66 5.63
5 4.5 4.46 4.43 4.4 4.36
6 3.81 3.77 3.74 3.7 3.67
7 3.38 3.34 3.3 3.27 3.23
8 3.08 3.04 3.01 2.97 2.93
9 2.86 2.83 2.79 2.75 2.71
10 2.7 2.66 2.62 2.58 2.54
11 2.57 2.53 2.49 2.45 2.4
12 2.47 2.43 2.38 2.34 2.3
13 2.38 2.34 2.3 2.25 2.21
14 2.31 2.27 2.22 2.18 2.13
15 2.25 2.2 2.16 2.11 2.07
16 2.19 2.15 2.11 2.06 2.01
17 2.15 2.1 2.06 2.01 1.96
18 2.11 2.06 2.02 1.97 1.92
19 2.07 2.03 1.98 1.93 1.88
20 2.04 1.99 1.95 1.9 1.84
21 2.01 1.96 1.92 1.87 1.81
22 1.98 1.94 1.89 1.84 1.78
23 1.96 1.91 1.86 1.81 1.76
24 1.94 1.89 1.84 1.79 1.73
25 1.92 1.87 1.82 1.77 1.71
26 1.9 1.85 1.8 1.75 1.69
27 1.88 1.84 1.79 1.73 1.67
28 1.87 1.82 1.77 1.71 1.65
29 1.85 1.81 1.75 1.7 1.64
30 1.84 1.79 1.74 1.68 1.62
40 1.74 1.69 1.64 1.58 1.51
60 1.65 1.59 1.53 1.47 1.39
120 1.55 1.5 1.43 1.35 1.25
∞ 1.46 1.39 1.32 1.22 1

Table H.8: F–Distribution Table (α = 0.05)
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Figure H.4: Graph of Fit to A + B/x + C/x2 + D/x3
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9Appendix I

Determining Graph Scatter

I.1 Introduction

You may have wondered if it’s possible to determine automatically whether a
linear graph has a “small” or a “large” scatter. Remember that the scatter is
considered “small” if a line can be drawn that crosses the error bars for each
data point. If no such line can be drawn, the scatter is considered “large”.
Consider a data point near the line of best fit. A point is considered “close”

y = mx + b

(xi, yi)

Figure I.1: Data point near best fit line
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210 Determining Graph Scatter

to the line if it passes within the box formed by the error bars for the point.

y = mx + b

(xi, yi)

Figure I.2: Data point near best fit line with error “box”

Note that it’s possible that a line could cut through one corner of the box
without actually crossing one of the error bars.
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I.1 Introduction 211

y = mx + b

(xi, yi)

Figure I.3: Line inside “box” but missing error bars

Let’s take a closer look at a data point. For point i, the error bars form a
box with two diagonals.

∆xi

∆yi

Figure I.4: Data point close-up view

We can redraw the “error box” showing the diagonals.
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212 Determining Graph Scatter

∆xi

∆yi slope is ∆yi

∆xi

slope is −∆yi

∆xi

Figure I.5: Diagonals from error bars

Now it should be clear that if a line passes through this box, even if it doesn’t
cross one of the error bars, then it must cross one of these diagonals with an
x value between xi + ∆xi and xi −∆xi.

y = mx + b

(xi, yi)

Figure I.6: Test whether line passes within error bars
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I.1 Introduction 213

The slope of the diagonal with the positive slope is

m+i =
∆yi

∆xi

(I.1)

The y-intercept of the diagonal with the positive slope is

b+i = yi −m+ixi (I.2)

since, by definition, (xi, yi) must be on the line. Similarly, The slope of the
diagonal with the negative slope is

m−i = −∆yi

∆xi

(I.3)

The y-intercept of the diagonal with the negative slope is

b−i = yi −m−ixi (I.4)

since, by definition, (xi, yi) must be on the line. For two lines y = m1x + b1

and y = m2x+b2, they cross when there is a single point (xc, yc) that satisfies
both equations. Thus

yc = m1xc + b1

and
yc = m2xc + b2

Combining this gives
m1xc + b1 = m2xc + b2

and so

xc =
b2 − b1

m1 −m2

(I.5)

To see where the best fit line y = mx+b crosses one of the diagonal lines,
we just use Equation I.5 and so

xci+ =
b− b+i

m+i −m
(I.6)

and

xci− =
b− b−i

m−i −m
(I.7)

If either of xci+ or xci− is between xi + ∆xi and xi − ∆xi then the best fit
line crosses the error bars for point i. If this is true for all of the data points,
then this is a case of small scatter.
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I.1.1 When this doesn’t work

This tests whether a given line crosses all of the error bars. So, if the least
squares fit line crosses all of the error bars, then this test is easy to use. It’s
possible, though, that the least squares fit line doesn’t cross all of the error
bars, but another line can be drawn which does. Unless we can determine
the equation of that line, we can’t apply this test.

Another case where this doesn’t work

If the x co-ordinate has no uncertainty, (i.e. there are only error bars in the
y direction), then this won’t work either. However, in that case, it easy to
apply a similar test to see if the line crosses all of the (vertical) error bars.
In this case, for each xi, it must be that

yi −∆yi ≤ mxi + b ≤ yi + ∆yi

or
|yi − (mxi + b)| ≤ ∆yi
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Lab Checklist

This marking checklist will be used for lab reports this term. You need to
print one off and attach it to each lab report you hand in. Lab reports will
be marked as follows:

• Start with 90

For items not in italics

• Subtract 1 for each˜.

• Subtract 2 for each − .

For items in italics

• Subtract 3 for each˜.

• Subtract 6 for each − .

Note the importance of items in italics. These are very important in a report,
and so are weighted accordingly.
The other 10 marks will be based on how well the post-lab discussion ques-
tions were answered within the text of the report. Remember that the an-
swers to these questions should be an integral part of the report, not merely
an afterthought.
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Lab Format Checklist (V2.25bg)

A. General

1. Your own work
2. Complete
3. Clear and appropriate “Purpose”
4. Flows
5. Did not require help on or after due date
6. Correct grammar
7. Correct spelling
8. Complete sentences where required
9. Legible
10. Professionally presented
11. Properly identified (eg. name, partner)
12. On time
13. Checklist included
14. Template included

B. Data (for data not in tables)

1. Your own data
2. Values recorded with uncertainties
3. Sufficient data
4. Reasonable values
5. Reasonable uncertainties
6. Correct number of significant figures
7. Units recorded
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C. Data in Tables

1. Neat
2. Column headings informative
3. Units given
4. Uncertainties given
5. Label
6. Number given (eg. “Table #2”)

D. Calculations and Results

1. Any required derivations done correctly
2. Analysis explained where needed
3. Correct formulas used
4. Sample calculations shown where needed
5. All required values calculated
6. Uncertainties included
7. Units included
8. Correct number of significant figures
9. Appropriate use of standard form
10. Theoretical or reasonable value
11. Agreement of experiment with theory

January 21, 2009



Ja
nu

ar
y
21

, 2
00

9

218 Lab Checklist

E. Graphs

1. Title meaningful
2. Correct graph type and orientation
3. Background colour and grid appropriate
4. Plotting data in table
5. Axis labels meaningful
6. Correct axis units
7. Points not connected
8. Error bars in both dimensions or note if

too small
9. Error bars correct size
10. Line of best fit shown without markers
11. Number given (eg. “Graph #3”)

F. Least Squares Fits

1. Points used for fit clearly identified
2. Results given meaningful names
3. Correct units for slope and intercept
4. Correct indication of “large” or “small”

scatter

G. Error Discussion

1. Sources listed are significant
2. Sources are prioritized
3. Systematic error consequences
4. Evidence: ie test or bound
5. Reasonable suggestions for improvement
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H. Conclusions

1. Relate to purpose
2. Major results stated
3. Comparisons made where appropriate
4. Agreement noted when found
5. % difference calculated only when no agree-

ment

I. References

1. Source(s) of constants listed

J. Methods

1. All steps clearly described
2. Paragraph format
3. Past tense

K. Introduction

1. Rationale for research given
2. Historical/experimental context given
3. Good references

L. Abstract

1. Important results summarized
2. Paragraph format
3. Appropriate verb tenses
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bars
error, 79, 83

calculations with uncertainties, 51
calibration error

see linearity error, 49
caliper

micrometer, 44
vernier, 44

curve
fitted, 79

curve fitting, 87

data
raw

including in tables, 119
scatter of, 91

degrees of freedom, 90
differences

method of, 29
digital scales, 42
Discussion of Errors, 51
Discussion of Uncertainties, 51
displaying lines in Excel, 135

effective uncertainty, 47
equations

linearizing, 85, 97
error

experimental, 9
linearity, 49

standard
in y-intercept, 93
in slope, 93

zero, 14, 48
error bars, 79, 83

in Excel, 131
errors

discussion of, 51
random, 11
systematic, 10

Excel
displaying lines, 135
error bars, 131
graphs, 129
least squares fitting, 132

fitted curve, 79
fitting

curve, 87
least squares, 89

freedom
degrees of, 90

graph
linearized, 79
origin, 83

graphs
Excel, 129

least squares fitting, 89
Excel, 132
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linear scales, 42
linearity error, 49
linearized equations

uncertainties, 106
linearized graph, 79
linearizing equations, 85, 97

maximum slope, 91
measurement

uncertainty in, 11
measurements

repeated, 37
dependent, 29

method of differences, 29
micrometer caliper, 44
micrometer scale, 44
minimum slope, 91

operations with uncertainties, 51
origin of graph as a data point, 83

precision measure, 11, 42
digital instruments, 42
non-digital instruments, 42

radians
uncertainties

functions of angles, 171
random errors, 11
raw data in tables, 119
realistic uncertainties, 12
repeated measurements, 37

dependent, 29

scales
digital, 42
linear, 42
micrometer, 44
vernier, 44

scatter of data, 91
scientific notation, 119
series

Taylor, 171
slope

maximum, 91
minimum, 91

spreadsheet, 123
standard error in y-intercept, 93
standard error in slope, 93
standard error of the y-intercept

Excel, 135
standard error of the slope

Excel, 135
standard form, 16, 119, 173
systematic errors, 10

Taylor series, 171
trigonometric functions

uncertainties, 171
typesetting, 73

uncertainties
calculations with, 51
discussion of, 51
operations with, 51
realistic, 12

uncertainties in linearized equations,
106

uncertainty, 9
effective, 47
standard form, 16, 173

vernier caliper, 44
vernier scales, 44

zero error, 14, 48
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