CP316 Serial Communication-UART

Terry Sturtevant

Wilfrid Laurier University

November 8, 2017

Universal Asynchronous Receiver Transmitter

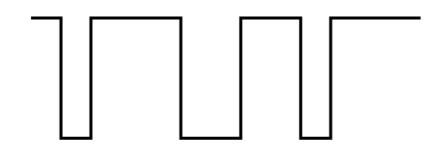
- Universal Asynchronous Receiver Transmitter
- Simplest form of serial communication

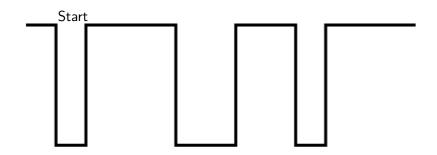
- Universal Asynchronous Receiver Transmitter
- Simplest form of serial communication
- Between 2 devices

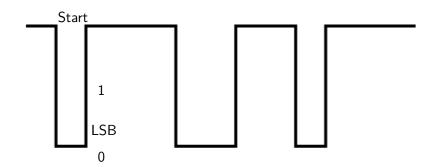
- Universal Asynchronous Receiver Transmitter
- Simplest form of serial communication
- Between 2 devices
- Uses 2 signals (and Ground), Rx and Tx

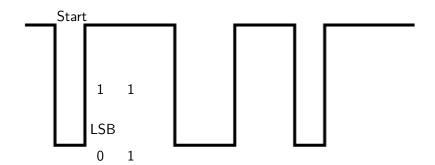
- Universal Asynchronous Receiver Transmitter
- Simplest form of serial communication
- Between 2 devices
- Uses 2 signals (and Ground), Rx and Tx
- Asynchronous, so both must agree on baud rate

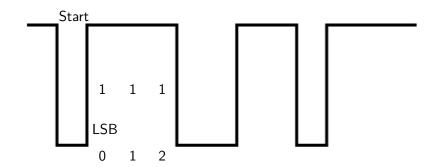
• 1 Start bit at "0" level

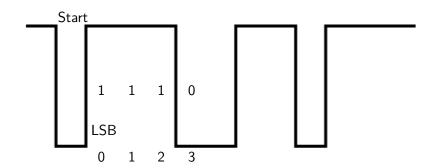

- 1 Start bit at "0" level
- LSB transmitted first

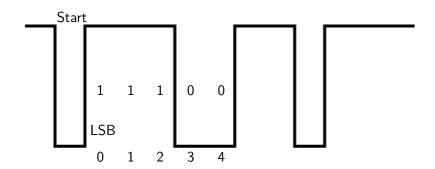

- 1 Start bit at "0" level
- LSB transmitted first
- Can have odd, even, or no parity bit

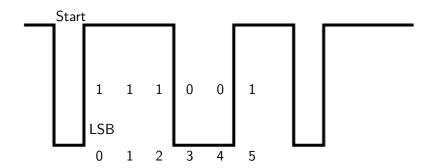

- 1 Start bit at "0" level
- LSB transmitted first
- Can have odd, even, or no parity bit
- 1 or 2 Stop bits at "1" level

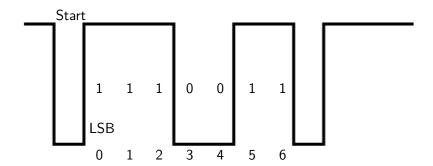

- 1 Start bit at "0" level
- LSB transmitted first
- Can have odd, even, or no parity bit
- 1 or 2 Stop bits at "1" level

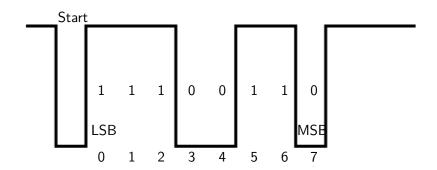

Since start and stop bits are opposite, new characters can always be detected.

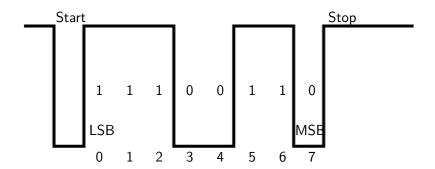


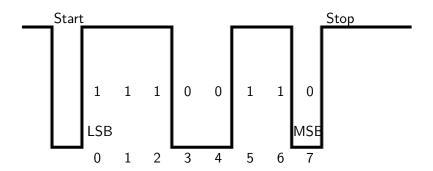


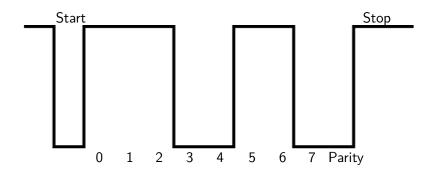


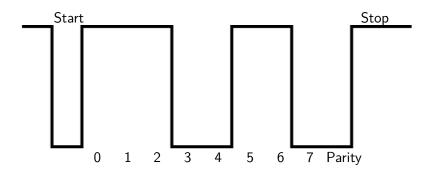


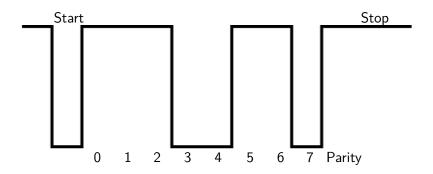








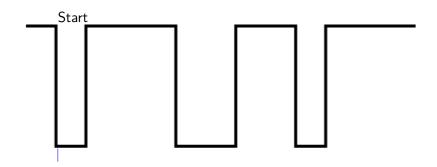


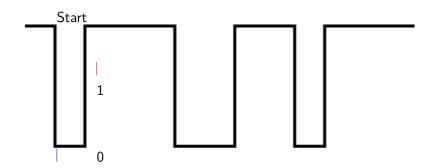


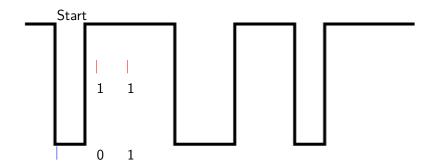
UART no parity - 01100111

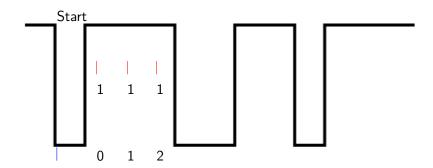
UART even parity

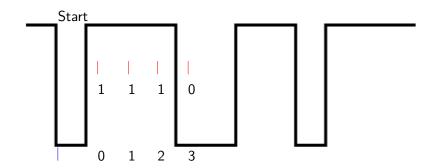

UART odd parity

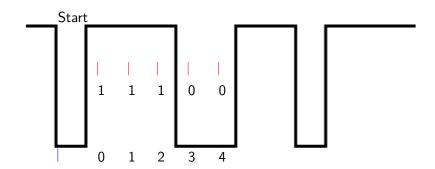

• Baud rate is the number of bits possible in a second

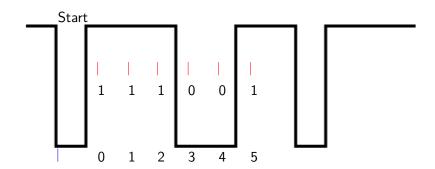

- Baud rate is the number of bits possible in a second
- ullet e.g. 9600 baud ightarrow 1 bit takes $rac{1}{9600}$ second

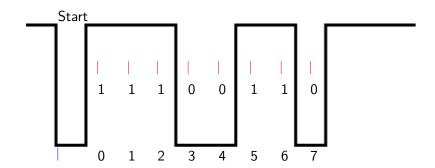

- Baud rate is the number of bits possible in a second
- ullet e.g. 9600 baud ightarrow 1 bit takes $rac{1}{9600}$ second
- After start bit is detected, wait time for $1\frac{1}{2}$ bit to test for first data bit and then after every 1 bit interval

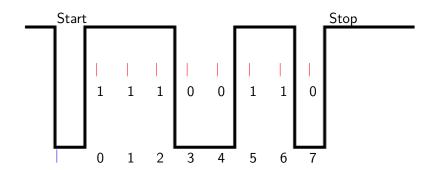

- Baud rate is the number of bits possible in a second
- ullet e.g. 9600 baud ightarrow 1 bit takes $rac{1}{9600}$ second
- After start bit is detected, wait time for $1\frac{1}{2}$ bit to test for first data bit and then after every 1 bit interval
- Resetting at the start bit allows some clock variation

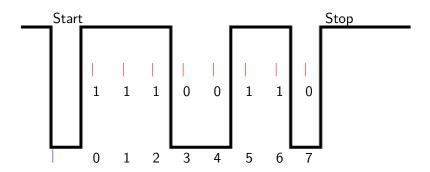




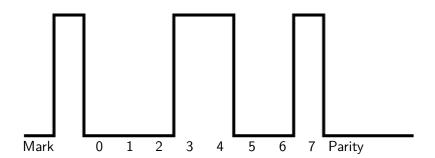


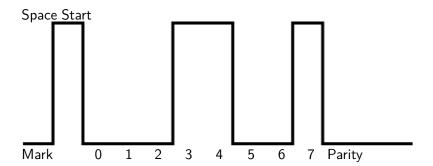


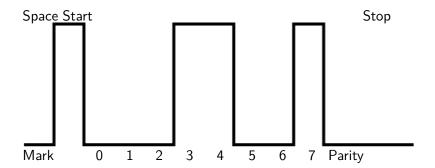


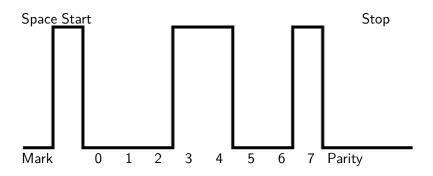


Bit timing


Voltages are inverted


- Voltages are inverted
- $\pm 3 \rightarrow \pm 12$


- Voltages are inverted
- \bullet $\pm 3 \rightarrow \pm 12$
- Zero is not a valid voltage


- Voltages are inverted
- $\pm 3 \rightarrow \pm 12$
- Zero is not a valid voltage
- ullet Mark level (inactive/1) is a negative voltage

- Voltages are inverted
- \bullet $\pm 3 \rightarrow \pm 12$
- Zero is not a valid voltage
- Mark level (inactive/1) is a negative voltage
- Space level (active/0) is a positive voltage

RS232 levels

QwikFlash modules

QwikFlash modules ramifications???

QwikFlash modules ramifications??? interrupts; transmit and receive

QwikFlash modules ramifications??? interrupts; transmit and receive

 \rightarrow Sections 6.4.5 to 6.4.7

QwikFlash modules ramifications??? interrupts; transmit and receive

- \rightarrow Sections 6.4.5 to 6.4.7
- \rightarrow Section 8.2

2 wires, one-to-one

2 wires, one-to-one EIA232 (RS232)

2 wires, one-to-one EIA232 (RS232)

→ Section 9.3

2 wires, one-to-one EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

USART asynchronous mode

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

USART asynchronous mode

 \rightarrow Section 9.4.2

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

USART asynchronous mode

 \rightarrow Section 9.4.2

USART asynchronous mode to EIA232

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

USART asynchronous mode

 \rightarrow Section 9.4.2

USART asynchronous mode to EIA232

 \rightarrow Section 9.4.5

2 wires, one-to-one

EIA232 (RS232)

 \rightarrow Section 9.3

USART registers

 \rightarrow Section 9.4.1

USART asynchronous mode

 \rightarrow Section 9.4.2

USART asynchronous mode to EIA232

- \rightarrow Section 9.4.5
- \rightarrow Section 16.0

2 wires (+ ground), one-to-one

2 wires (+ ground), one-to-one TX

```
2 wires (+ ground), one-to-one
```

TX

RX

2 wires (+ ground), one-to-one

TX

RX

Fixed baud rate, common to both devices

```
2 wires (+ ground), one-to-one
```

TX

RX

Fixed baud rate, common to both devices

At least one start bit

```
2 wires (+ ground), one-to-one
```

TX

RX

Fixed baud rate, common to both devices

At least one start bit

At least one stop bit

```
2 wires (+ ground), one-to-one
```

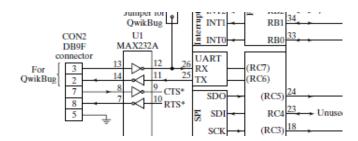
ΤX

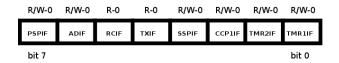
RX

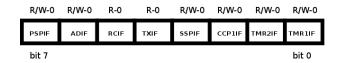
Fixed baud rate, common to both devices

At least one start bit

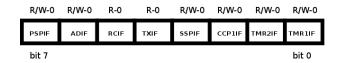
At least one stop bit

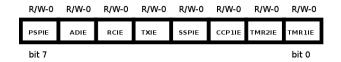

voltage levels not TTL; inverted (normally)


```
2 wires (+ ground), one-to-one TX RX Fixed baud rate, common to both devices At least one start bit At least one stop bit voltage levels not TTL; inverted (normally) (except "TTL serial" devices)
```

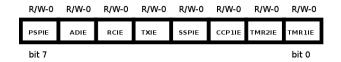

```
2 wires (+ ground), one-to-one
TX
RX
Fixed baud rate, common to both devices
At least one start bit
At least one stop bit
voltage levels not TTL; inverted (normally)
(except "TTL serial" devices)
packets are single characters
```

Qwikflash UART connections

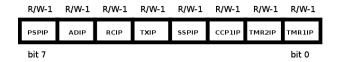

Qwikflash UART connections

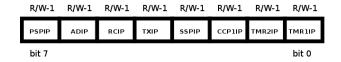


Bits in PIR1 register

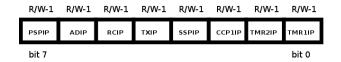


Bits in PIR1 register - Note RCIF, TXIF





Bits in PIE1 register



Bits in PIE1 register - Note RCIE, TXIE

Bits in IPR1 register

Bits in IPR1 register - Note RCIP, TXIP

overview

overview reasons

overview reasons *NIB*

PORT configuration

PORT configuration

 \rightarrow macro or subroutine?

PORT configuration

 \rightarrow macro or subroutine?

Initiallization

PORT configuration

 $\rightarrow \mathsf{macro} \ \mathsf{or} \ \mathsf{subroutine?}$

Initiallization

 \rightarrow macro or subroutine?

PORT configuration

 $\rightarrow \mathsf{macro} \ \mathsf{or} \ \mathsf{subroutine?}$

Initiallization

 \rightarrow macro or subroutine?

Write to device

PORT configuration

 $\rightarrow \ \mathsf{macro} \ \mathsf{or} \ \mathsf{subroutine?}$

Initiallization

 \rightarrow macro or subroutine?

Write to device

 \rightarrow macro or subroutine?

PORT configuration

 \rightarrow macro or subroutine?

Initiallization

 \rightarrow macro or subroutine?

Write to device

 \rightarrow macro or subroutine?

Read from device

PORT configuration

 \rightarrow macro or subroutine?

Initiallization

 \rightarrow macro or subroutine?

Write to device

 \rightarrow macro or subroutine?

Read from device

 \rightarrow macro or subroutine?