#### M

## Digital Inputs: Pushbutton

- traditional use is to generate a signal change
- in instrumentation, use one button for two different types of actions:
  - □long hold
  - □ short press
  - □ e.g. turn on/off for a device on a control panel



conceptually

implemented as

#### 2

## Digital Inputs: Pushbutton

- design considerations: contact bounce
  - □ is the switch debounced?
  - how do you determine contact bounce?

1.

2.

- Debouncing:
  - Hardware debounce => text pg315

#### ■ Major Specifications

| Туре       |                                 | Snap action/Push-on type SPST     |             |
|------------|---------------------------------|-----------------------------------|-------------|
| Electrical | Circuit Diagram                 | Top-push                          | Side-push   |
|            | Rating                          | 20 mA 15 Vdc                      |             |
|            | Contact Resistance              | 50 mΩ max.                        |             |
|            | Insulation Resistance           | 50 MΩ min. (at 100 Vdc)           |             |
|            | Dielectric Withstanding Voltage | 250 Vac for 1 minute              |             |
|            | Bouncing                        | 3 ms max. (ON)<br>8 ms max. (OFF) |             |
| Mechanical | Operating Force                 | 1.0 N±0.4 N<br>1.3 N±0.4 N        | 2.6 N±0.6 N |
|            | Travel                          | 1.6 N±0.5 N<br>0.25 mm±0.10 mm    |             |

# Digital Inputs: Pushbutton

2. Software debounce







### Reading:

- Text: Chapter 7 Parallel Ports
  - □ sections 7.8-7.9

Pushbutton datasheet: <u>LIGHT TOUCH</u> <u>SWITCH 100GF</u> [Manufacturer Part Number EVQ-PAC04M; <u>Panasonic-ECG</u>]