Programming style tips

Good coding requires fewer comments

Tip1:

Use different naming conventions for constants and variables.

MPASM uses lower case for commands, and UPPER CASE for SFRs,

so I can use

PCFG0
equ
0x01
;this name is used in PIC

;documentation, so I'll

;treat it like an SFR name

_MY_CONST
equ
0x77
; a constant, defined by me

;all upper case

;leading underscore

_my_var

;a variable defined by me

;lower case, leading underscore

My_Macro

;a macro defined by me

;camel case, no leading

;
underscore

This way I can immediately identify anything. (Like colour coding wiring in a circuit.)

Tip 1a:

There are lots of useful universal definitions you can make that will get used in lots of programs.

Some obvious examples:

_BOTTOM_NIBBLE

equ
0x0F

_TOP_NIBBLE

equ
0xF0

_ASCII_DIGIT_OFFSET

equ
0x30

Tip 1b:

There are lots of useful macros you can make that will get used in lots of programs.

Some obvious examples:

W_Add
;add two word values

W_Sub
;subtract two word values

H_2_Ascii
;convert hex nibble into ASCII character

Tip2:

Eliminate magic numbers by using constants for bit numbers.

bsf LATA,3

is not as useful as

bsf LATA,_LED_LEFT

following

;PORTA definitions

_LED_LEFT

equ
3

_LED_CENTRE

equ
2

_LED_RIGHT

equ
1

etc.

Also, easier to search code for “_LED_LEFT” than “3”.

(The underscore at the beginning makes it easy to see as one

of my own constants.)

Tip2a:

Create templates for SFRs with special bits to clarify configuration.

movlf B'01001100', ADCON1

; ||||||||

; |||||||PCFG0

; ||||||PCFG1

; |||||PCFG2

; ||||PCFG3

; |||--

; ||--

; |ADCS2

; ADFM

Tip2b:

Use constants for bits in SFRs with special bits to clarify configuration.

PCFG0
equ
0x01

PCFG1
equ
0x02

PCFG2
equ
0x04

PCFG3
equ
0x08

ADCS2
equ
0x40

ADFM

equ
0x80

Movlf ADCS2 + PCFG3 + PCFG2, ADCON1

Tip2c:

This is useful for all kinds of registers, (like for external devices), and it's even useful when having a bit CLEARED (ie. zero) has some function.

;LCD display options

_LCD_DISPLAY_ON

equ
0x04

_LCD_DISPLAY_OFF

equ
0x00

_LCD_DISPLAY_CURSOR_ON

equ
0x02

_LCD_DISPLAY_CURSOR_OFF

equ
0x00

movlw _LCD_DISPLAY_ON +_LCD_DISPLAY_CURSOR_OFF

Obviously no comment is needed for the previous line,

and if you changed it to

movlw _LCD_DISPLAY_OFF

you wouldn't need to notice the comment was incorrect and change it.

Tip2d:

Start all definitions for specific devices with a common prefix.

;PORTA definitions

_LED_LEFT

equ
3

;LCD display options

_LCD_DISPLAY_ON

equ
0x04

;LCD macros

_LCD_Send_Char

Since MPASM uses names like TMR0H, etc. use something similar for anything you define.

;Timer 0 macros

TMR0_Start

;My variable to hold copy of high byte of timer0

_tmr0h_copy

or if you'd rather

_TMR0H_copy

etc.

Then you can search for everything related to a device or function easily.

Tip3:

Use macros to hide busy work of assembler commands and subroutines.

eg. to multiply requires 4 instructions

move one var to WREG

multiply other var, result placed in PRODH:PRODL

move PRODH to destination

move PRODL to destination

replace with macro

Multiply source1,source2,desth,destl

Same for subroutines; suppose you write a divide subroutine

which uses similar format to multiply

move dividend to reg1

move divisor to reg2

call div
;divides reg1 by reg2

;result returned in reg3

move reg3 to quotient (destination)

Divide dividend, divisor, quotient

is much easier to read

Tip 4:

If you need labels in a macro, they have to be relative,

e.g.

bra
$+6
; jump to 3rd instruction after this

bra
$-4
; jump to 2nd instruction before this

(Remember each instruction requires an increment of 2.)

