
3
PIC18 Development Tools

3.1 Objectives
After completing this chapter, you should be
able to

� Explain the function of software tools

� Explain the basic function of hardware tools

� Use MPLAB® IDE to enter programs and build
the executable code

� Use MPLAB ICD2 to perform software
debugging for the PIC18 microcontroller

� Use MPLAB simulator in perform software
debugging for the PIC18 microcontroller



90 Chapter 3 � PIC18 Development Tools

3.2 Development Tools

Development tools for microprocessors/microcontrollers can be classified into two cate-
gories: software and hardware. Software tools include programmers’ editors, assemblers, compil-
ers, simulators, debuggers, communication programs, and integrated development environment.
Hardware tools include demo boards, logic analyzers, emulators, oscilloscopes, and logic probes.

Discussing all these tools is beyond the scope of this book. However, hardware and software
tools made by Microchip and a few vendors for the PIC18 microcontrollers are reviewed in this
book.

3.3 Software Tools

Software tools include text editors, cross assemblers, cross compilers, simulators, source-
level debuggers, and integrated development environment.

3.3.1 Text Editors
The text editor is a program that allows us to enter and edit programs and text files. Editors

range from very primitive to very sophisticated. A simple editor like the Notepad bundled with
Windows 98/2000/XP provides simple editing functions in four different categories: file, edit,
search, and option.

The Wordpad program bundled with the Windows 98/2000/XP is another simple editor that
you can use to enter your program.

The Microchip MPLAB IDE has an embedded text editor for the user to enter programs.
Most of the basic text editing functions are available in the MPLAB editor.

For professional programmers, neither Notepad nor Wordpad is adequate because of their
primitive functions. A programmer’s editor provides additional features, such as automatic key-
word completion, keyword highlighting, syntax checking, and parentheses matching. These
functions can speed up the user’s program entry speed dramatically. The PFE editor is a free-
ware programmer’s editor available from the Internet and can be downloaded from www.wintel
.com or www.simtel.net.

3.3.2 Cross Assemblers and Cross Compilers
Cross assemblers and cross compilers generate executable code to be placed in ROM,

EPROM, EEPROM, or flash memory of a PIC18-based product. Currently, several vendors are
providing cross assemblers and cross-C compilers for the PIC18 microcontroller. At the time
of this writing, Microchip, CCS, IAR, and HI-TECH provide cross compilers for the PIC18
microcontroller.

3.3.3 Simulator
A simulator allows us to run a PIC18 program without having the actual hardware. The

contents of registers, internal memory, external memory, and the program source code are dis-
played in separate windows. The user can set breakpoints to the program and examine the pro-
gram execution results. The simulator allows the user to step through the program to locate
program bugs. The MPLAB IDE development software from Microchip includes simulators for
all PIC16/PICI7/PIC18 devices.



3.4 � Hardware Tools 91

3.3.4 Source-Level Debugger
A source-level debugger is a program that runs on a PC (or a workstation) and allows you

to find problems in your code at the high level (such as C) or assembly language level. A source-
level debugger allows you to set breakpoints at statements either at the high or assembly lan-
guage level. It can execute the program from the start of the program until the breakpoint and
then display the values of program variables. A source-level debugger can also trace your pro-
gram statement by statement. A source-level debugger may have the option to run your program
on the demo board or simulator. Like a simulator, a source-level debugger can display the con-
tents of program variables, registers, memory locations, and program code in separate windows.
With a source-level debugger, all debugging activities are done at the source level.

A source-level debugger can also invoke a simulator to perform debugging activity. The 
C-Spy from IAR is a source-level debugger for the PIC18 microcontrollers that uses this
approach. In addition to running the program on a demo board, the debugger of the MPLAB IDE
can also use simulator to debug your program.

3.3.5 Integrated Development Environment
An integrated development environment (IDE) includes everything that you need to enter,

assemble, compile, link, and debug your application program. It includes every software tool
mentioned earlier. A tool is invoked by clicking on the icon of the corresponding tool. The
MPLAB IDE is an IDE designed for all Microchip microcontrollers. It is free and can be down-
loaded from Microchip’s Web site at www.microchip.com. The Embedded Workbench from IAR
is also an IDE for the PIC18 microcontrollers.

3.4 Hardware Tools

Numerous hardware development tools are available for the PIC18 microcontrollers.
Microchip provides the following hardware development tools to support the hardware devel-
opment of PIC18-based product:

1. In-circuit emulators

2. Device programmers

3. Demo boards

4. In-circuit debugger (ICD2)

3.4.1 The Nature of Debugging Activities
When an embedded product is being designed, both the hardware and the software compo-

nents are being developed in parallel. Therefore, software debugging needs to be done before the
final hardware is completed. Software debugging in microcontroller-based product development
can be classified into a software-only approach and a hardware-assisted approach. Using a demo
board with a resident monitor or simulator to test the program is the software-only approach.
In the hardware-assisted approach, either the logic analyzer or the emulator is used to trace the
program execution. No matter what approach is used, one needs to run the application programs
in order to find out if program execution results are what one expects. When the program exe-
cution results are not what one expects, one would examine the programs to find out if there
are any obvious logical errors. Many errors can be identified in this manner. However, there are
some errors that cannot be easily identified by examining the program.



92 Chapter 3 � PIC18 Development Tools

Many microcontroller demo boards have an onboard monitor program. A good monitor
allows the user to enter commands to display and modify the contents of registers and memory
locations, set breakpoints, trace program execution, and download the user program onto the
demo board for execution. By using appropriate monitor commands, the user will be able to
determine whether his or her program executes correctly up to the breakpoint. Instruction trac-
ing is also available from most monitors in case the user needs to pinpoint the exact instructions
that cause the error. All peripheral functionality can be actually exercised using this approach.
A source-level debugger can be written to communicate with the monitor on the demo board or
invoke the simulator to execute the user program. Using this approach, you need not examine
the contents of memory locations in order to find out if the program execution result is correct.
Instead, values of program variables are available for examination during the process of program
execution. In other words, debugging activity is carried out at the source level.

In the hardware-assisted approach, designers use an in-circuit emulator (ICE) to identify pro-
gram errors. The ICE needs to reconstruct instructions being executed from the data flowing on
the system bus of the target prototype (including address, data, and control signals). This
approach may require certain built-in hardware support from the microcontroller used in the pro-
totype in order to identify the boundary of instructions. The ICE also allows us to set breakpoints
at those locations that are likely to have errors so that program execution result can be exam-
ined. This approach is especially useful when a demo board with a resident monitor is not avail-
able. The price of an ICE usually costs much more than a demo board with a resident monitor.

In the past decade, more and more microcontrollers provide hardware support for software
debugging. The IEEE 1149.1 JTAG Boundary Scan Interface was initially proposed to standard-
ize the interface for testing newly designed integrated circuits. Many companies (e.g., 8051-
variant vendor Silicon Laboratory and Atmel) also utilize this interface to provide support for
software debugging and programming the on-chip flash memory or one-time-programmable
EPROM. Other companies (including Motorola and Microchip) provide a serial interface (called
Background Debug Module) that utilizes two to four pins to support in-circuit programming and 
software debugging but do not provide boundary scan test capability. These interfaces allow
nonintrusive inspection of memory and register contents, support breakpoints, and allow single
stepping of user programs. Tool developers can take advantage of these capabilities to imple-
ment inexpensive source-level debugger. The ICD2 from Microchip is an in-circuit debugger
that utilizes this interface.

3.4.2 ICE
All debugging activities for microcontroller-based products involve running the application

program. Depending on the progress of the product development, some debugging activities must
be performed before the hardware product is available. An ICE allows the user to debug his or her
software before the final hardware is constructed. An ICE includes a target processor module to
emulate the final hardware. It can reconstruct the instruction stream being executed on the fly.

Microchip manufactures the MPLAB ICE2000 ICE. As shown in Figure 3.1, the MPLAB
ICE-2000 consists of four components:

1. Emulator pod. This unit communicates with a PC to receive the software program to
be tested.

2. Processor module. This module executes the instructions downloaded into the
emulator pod.

3. Device adapter. A device adaptor consists of IC sockets and additional circuitry to
allow the MCU to be connected to the target hardware.

4. Transition socket. This socket and the device adapter plugs into the target hardware
so that signals can be exercised to the target hardware.



3.4 � Hardware Tools 93

Figure 3.1 � MPLAB ICE2000 Emulator (reprint with permission of Microchip)

3.4.3 Device Programmer
The software program must be programmed into the on-chip ROM of the microcontroller

before it can be tested. Microchip provides two programmers to meet the need of different users:

PICSTART® PLUS. PICSTART® Plus is a low-cost programmer for the PIC18
microcontrollers and other microcontrollers from Microchip. The photograph of this
programmer is shown in Figure 3.2. A 40-pin socket is provided. By adding appropriate
adapters, the PICSTART Plus can program PIC18 members with higher pin count.
PICSTART Plus is connected to a PC through the serial port and is driven by the
MPLAB IDE software.

Figure 3.2 � PICSTART Plus programmer (reprint with permission of Microchip)



94 Chapter 3 � PIC18 Development Tools

PRO MATE® II. The PRO MATE® II device programmer, shown in Figure 3.3, is
another programmer made by Microchip that can program all microcontrollers from
Microchip. Appropriate adapters are needed for different packages. Like the PICSTART
Plus programmer, this programmer is also connected to the serial port of a PC and is
controlled by the MPLAB IDE software.

Figure 3.3 � PRO MATE II programmer (reprint with permission of Microchip)

In addition to programming microcontrollers, PRO MATE II can also program many
EPROM and EEPROM devices.

3.4.4 In-Circuit-Debugger II
In-Circuit-Debugger II (ICD2) is designed to be a low-cost solution for debugging devices

that support In-Circuit Serial Programming (ICSP) protocol. These devices provide on-chip flash
memory to hold application programs. To enable in-circuit debugging, the ICD2 programs a
small debug executive module into the target PIC® microcontroller device (i.e., the PIC18
microcontroller in your demo board). This debug executive module will reside at the end of the
program memory. The debug executive works by communicating with special on-chip func-
tions built inside the PIC18 microcontroller.

Utilizing the in-circuit debugging capability of the Flash PIC microcontroller and Micro-
chip’s ICSP protocol, the ICD2 also acts as a programmer. It operates under MPLAB IDE, con-
nects to an application, and runs the actual microcontroller in the design.

The ICD2 module contains the logic for debugging, programming, and control. It is con-
nected to either a PC’s serial port via a nine-pin serial cable or a USB port via a USB cable and
to the PIC18 demo board or target application using a six-wire modular cable. A photograph of
ICD2 is shown in Figure 3.4.



3.5 � Using MPLAB IDE 95

The module contains the software to provide serial communications to the PC and the tar-
get application or demo board and to program a supported PIC microcontroller device, all from
the MPLAB IDE. The ICD2 module can provide power to the demo board/target application.
The user can select VDD source on the Power tab in the ICD2 Settings dialog. If the target appli-
cation draws over 200 mA, an additional power adapter must be connected to the demo board
or target application. The target application also provides power to the ICD2 module only for
the purpose of logic-level conversion.

The ICD2 interface cable must be plugged into a modular connector on the application cir-
cuit with the appropriate connections to the PIC microcontroller device. The interface cable
carries the signals necessary to allow in-circuit debugging of the target application.

3.4.5 Demo Boards
Demo boards are useful for learning the microcontroller and testing the software before the

final hardware is completed. As a learning tool, a well-designed demo board should allow the
user to experiment with every peripheral function. Three demo boards will be reviewed in
Section 3.8. Each of these demo boards can be used to test the programs in this book.

3.5 Using MPLAB IDE

MPLAB IDE is the center of Microchip’s software development tool suite. It supports all the
devices produced by Microchip that require software control. It consists of a text editor, a simula-
tor, a cross assembler that supports all microcontrollers and digital signal processors, a simulator,
and device drivers (for programmers, ICE, ICD, and ICD2) made by Microchip. A small number of
third-party development tools (e.g., Hi-Tech C compiler) can also work with MPLAB IDE.

Figure 3.4 � Microchip ICD2 in-circuit debugger (reprint with permission of Microchip)



96 Chapter 3 � PIC18 Development Tools

MPLAB IDE is a 32-bit window application that uses projects to manage software develop-
ment tasks. A project may consist of a single or multiple files. This section will provide a step-
by-step tutorial that sets up a project and gets you familiar with the debug capabilities of
MPLAB IDE.

3.5.1 Getting Started with MPLAB IDE
MPLAB IDE provides the ability to do the following:

1. Create source code using the built-in editor.

2. Assemble, compile, and link source code using various language tools. An assembler,
linker, and librarian come with MPLAB IDE, which also supports C compilers
(MCC17 and MCC18) by Microchip. A limited number of third-party C compilers are
also supported.

3. Debug the executable logic by watching program flow with the built-in simulator or
in real time with the MPLAB ICE2000 emulator or MPLAB ICD2 in-circuit debugger.

4. Make timing measurements with the simulator or emulator.

5. View variables in Watch windows.

6. Program firmware (executable machine code) into devices with PICSTART® Plus or
PRO MATE® II device programmers.

7. Find quick answer to questions from the MPLAB IDE online help.

To start the IDE, select Start>Programs>Microchip MPLAB IDE>MPLAB IDE from your
monitor screen or simply double-click on the MPLAB IDE icon. A splash screen will display
first, followed by the MPLAB IDE desktop as shown in Figure 3.5.

Figure 3.5 � MPLAB IDE desktop (reprint with permission of Microchip)



3.5 � Using MPLAB IDE 97

The major steps in software development using MPLAB IDE are as follows:

Step 1
Create a new project.

Step 2
Enter source files.

Step 3
Add source files into the project,

Step 4
Compile and build the executable code.

Step 5
Debug the project using the simulator, or ICD2, or ICE.

3.5.2 Creating a Simple Project
Before creating a new project, the user must configure the project and select the target

device. After creating a new project, the user needs to set the language tool location and select
the tool suite.

To configure the project, go to the Configure> settings menu and choose the Projects tab.
Make sure the setup is as shown in Figure 3.6. Click on OK after making sure the setting is right.

Figure 3.6 � Configure the project (reprint with permission of Microchip)

The next step is to make sure the right device is selected. For this tutorial, the PIC18F452
has been chosen. To select the target device, go to Configure>Select Devices . . . and make the
selection as shown in Figure 3.7.



98 Chapter 3 � PIC18 Development Tools

After the correct target device has been selected, the user is ready to create a new project.
When creating a new project, the user needs to decide where to place the project. This tutorial
will assume that the user has decided to use the directory c:\pic18\ch03 to place his or her proj-
ects. Follow these steps to create a new project:

1. Select the Project> New menu. The New dialog will open as shown in Figure 3.8.

2. Enter the name of the new project (e,g., tutor1).

Figure 3.7 � Select device dialog (reprint with permission of Microchip)

Figure 3.8 � New project dialog (reprint with permission of Microchip)



3.5 � Using MPLAB IDE 99

3. Use the Browse button to select the path to place the new project or type
in the path.

4. When the Project name and Location are correct, click on OK.

After creating a new project, the user needs to make sure the language tool locations are set
properly. To do this, select Project> Set Language Tool Locations to confirm the location of the
Microchip Tool Suite. Click on MPASM Assembler (mpasmwin.exe). The full path to the
MPASM Assembler executable should appear in the Location of Selected Tool text box as
shown in Figure 3.9. If it is incorrect or empty, click on Browse to locate mpasmwin.exe. After
the language tool location has been set up, the user can skip this step until he or she switches
language tools.

Figure 3.9 � Setting language tool location dialog (reprint with permission 
of Microchip)

Before starting entering your source code, one needs to set the language tool suite to be used
in the new project. This allows the MPLAB IDE to tailor its operation more accurately with
regard to context-sensitive editing and file extensions. Perform the following steps to select the
language suite:

1. Select Project> Set Language Toolsuite.

2. For Active Toolsuite, select Microchip MPASM Toolsuite for this tutorial. The
PICmicro® language tools will appear under Toolsuite Contents.

3. Click on OK.

The dialog for selecting language suite is shown in Figure 3.10.



100 Chapter 3 � PIC18 Development Tools

3.5.3 Entering Source Code
After the new project has been configured properly, one can now enter the source code for

the project.
Select File> New. A blank edit window will be opened in the workspace of MPLAB IDE.

Enter the following program to the Edit window:

title “Finding the Number of Elements That Are a Multiple of 4”
#include <p18F452.inc>

ilimit equ 0x20
count set 0x00
loop_cnt set 0x01
mask equ 0x03 ; used to mask upper six bits

org 0x00
goto start
org 0x08 ; high-priority interrupt service routine
retfie
org 0x18 ; low-priority interrupt service routine
retfie

start clrf count,A
movlw ilimit
movwf loop_cnt ; initialize ii to N
movlw upper array ; use table pointer to point to the array
movwf TBLPTRU, A ; “
movlw high array ; “
movwf TBLPTRH,A ; “
movlw low array ; “
movwf TBLPTRL,A ; “

i_loop movlw mask
tblrd*+ ; read an array element into TABLAT
andwf TABLAT,F,A
bnz next ; branch if not a multiple of 4
incf count,F,A ; increment count if it is a multiple of 4

Figure 3.10 � Dialog for selecting language tool suite
(reprint with permission of Microchip)



3.5 � Using MPLAB IDE 101

next decfsz loop_cnt,F,A ; decrement loop count
goto i_loop
nop

array db 0x00, 0x01, 0x30, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09
db 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13
db 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D
db 0x1E, 0x1F
end

This program counts the number of elements in the given array that are divisible by 4. The low-
est two bits of a number divisible by 4 are 00. This program starts with the first element and
checks if it is divisible by 4. It increments the variable count by 1 if an element is divisible by
4 until the last element is checked. The array is located in program memory.

Once the source code has been entered, the user should select File> Save and save the file
in the project directory as tutor1.asm. After the user has saved the code, the program is shown
with identifying colors for readability. This context-sensitive colorization is customizable. For
more information about the editor, see Help> MPLAB Editor Help.

3.5.4 Adding Source Files to the Project
To add a source file to the project, select Project> add Files to Project. A dialog window as

shown in Figure 3.11 will appear on the screen. Select the file that you just created and saved
(tutor1.asm) and click on Open. After this, the newly inserted file should appear in the project
pane under Source Files (shown in Figure 3.12). If it appears under Unclassifiable, confirm that
you have selected the correct language tool suite by selecting Project> Set Language Toolsuite.
“Microchip Toolsuite” should appear as the Active Toolsuite. If not, select it and click on OK.
The file name should now appear under Source Files.

Figure 3.11 � Select input file dialog 
(reprint with permision of Microchip)

Figure 3.12 � Project pane 
(reprint with permission of Microchip)



102 Chapter 3 � PIC18 Development Tools

Save the project by selecting Project> Save. You call also add files and save projects by using
the right mouse button in the project pane. Experiment by clicking the right mouse button
while the cursor is over Source Files. Note that the menu options are different.

3.5.5 Building the Project
After adding source files into the project, it is time to build the project. This step will com-

pile the source code using the selected language tool suite.
To build the project, select Project> Build All or Project> Make (or press function key F10).

This file (tutor.asm) should assemble successfully. If this project does not build correctly, check
the following items and then build the project again:

� Check the spelling and format of the program in the editor window. If the
assembler reported errors in the Output window, double-click on the error in the
Output window. This will indicate the corresponding line in the source code with a
green arrow in the gutter of the source code window.

� Check that the correct assembler (MPASM assembler) for the PICmicro device is
being used.

On a successful build, the debug files (with file name extension .cod or .cof) generated by the
language tool will be loaded. This file allows one to debug using the source code and view pro-
gram variables symbolically in Watch windows.

For this one-file example, a project does not seem necessary. However, the real power of
projects comes when many files are to be compiled/assembled and linked to form the final exe-
cutable application. Projects keep track of all this for the user.

3.5.6 Debugging the Project
After building the project, one will want to check that it is functioning the way he or she

intended. To do this, one will need to select a debug tool. There are five debug tools under the
Debugger>Select Tool menu:

1. MPLAB ICD2

2. MPLAB ICE4000

3. MPLAB SIM

4. MPLAB ICE2000

5. MPLAB SIM30

Among these five debug tools, ICD2, SIM, and ICE2000 can be used to debug PIC18 microcon-
troller applications. The uses of SIM and ICD2 are discussed in the next two sections. The use
of MPLAB ICE2000 or the ICE4000 is not discussed because of their higher cost.

3.6 Using the MPLAB SIM in Debugging PIC18 Applications

Program simulation involves the following major operations:
� Simulator setup
� Running the code
� Viewing variables



3.6 � Using the MPLAB SIM in Debugging PIC18 Applications 103

� Using Watch windows
� Setting breakpoints
� Tracing code

3.6.1 Setting Up the Simulator
The first step for simulating the program is to select MPLAB SIM as the debugging tool.

This is done by selecting Debugger>Select Tool> MPLAB SIM. After selecting MPLAB SIM as
the debugging tool, the status bar on the bottom of the MPLAB IDE window should change to
“MPLAB SIM”. Additional menu items should now appear in the Debugger menu. Additional
toolbar elements would also appear on the MPLAB IDE window. This is shown in Figure 3.13.

Figure 3.13 � MPLAB IDE window status change after selecting SIM.
Additional menu items also appear under Debugger menu.
(reprint with permission of Microchip)

3.6.2 Running Code under MPLAB SIM
Before running the program, one needs to set the program counter to the start of the pro-

gram by selecting Debugger> Reset (or press function key F6). A green arrow should appear in
the gutter of the source code window (in Figure 3.14), indicating the first source code line that
will be executed.



104 Chapter 3 � PIC18 Development Tools

Select Debugger >Run (or press function key F9) to run the program. The message
“Running. . .” will appear on the status bar.

Because the simulator was not told where to stop, it will keep running. To halt the program
execution, select Debugger > Halt (or press function key F5). The line of code where the appli-
cation halted will be indicated by the green arrow.

We can also single step through the application program by selecting Debugger > Step Into
(or press function key F7). This will execute the currently indicated line of the code and move
the arrow to the next line of code that will be executed.

Figure 3.14 � Source code window after Reset (reprint with permission of Microchip)



3.6 � Using the MPLAB SIM in Debugging PIC18 Applications 105

Figure 3.15 � Mouse over variable “count” (reprint with permission of Microchip)

3.6.4 Using Watch Window to View Variables
Often one wants to watch certain key variables all the time. Rather than floating the mouse

cursor over the name each time one wants to see the value, one can open a Watch window. The
Watch window will remain on the screen and show the current variable values. Watch windows
can be found under the View menu.

3.6.3 Viewing Variables
One can see the values of variables at any time by putting the mouse cursor over their

names anywhere in the source file. A small output window will pop up to show the current
value. A screen shot for placing mouse over the variable count is shown in Figure 3.15.



106 Chapter 3 � PIC18 Development Tools

To open a Watch window, View> Watch. There are two ways to add a symbol into the
Watch window:

1. Click the mouse in the Watch window and then type the name of the symbol and
press the Enter key.

2. Select from the symbol selection box at the top of the window and then click on Add
Symbol to add it to the Watch window list.

One can also add any special-function register (SFR) into the Watch window list. The procedure
is identical to the procedure for adding symbols.

The only symbol of interest to us is count. Add it to the Watch window. The resultant
Watch window is shown in Figure 3.16.

Figure 3.16 � Watch window for tutor1 (reprint with permission of Microchip)

Now we can watch the symbol value change as we step through the program:

1. Press function key F6 to reset your program.

2. Press function key F7 to step through the program one instruction at a time until you
have stepped to the following program line:

incf count,F,A ; increment count if it is a multiple of 4

3. Step one more time to see the value of count in the Watch window change from 
0 to 1. The changed value appears in red color.

4. Continue to step through the program until you reach the instruction that follows
incf count,F,A. You will see that the value of count increments if a value that is
divisible by 4 is reached.

5. Continue to step through the program until all the array elements have been checked.
The final value of count is 9 for this example.

3.6.5 Setting Breakpoints
Sometimes one wants to run the program to a specific location and then halt. This is

accomplished by using breakpoints. To set a breakpoint, press the right mouse button on the
code line that one wants to set a breakpoint. Suppose one wants to set a breakpoint at the nop
instruction. Press the right mouse button, and a pop-up window as shown in Figure 3.17 will
appear. It is correct that Figure 3.17 appeared overlapping.



3.6 � Using the MPLAB SIM in Debugging PIC18 Applications 107

Figure 3.17 � A screen snapshot after pressing the right mouse button at “nop” 
(reprint with permission of Microchip)

From the pop-up menu that appears, select Set Breakpoint. A “stop sign” should appear in
the gutter next to the line (shown in Figure 3.18). Before running the program, press function
key F6 to reset the program.

Figure 3.18 � Source code window - Set Breakpoint (reprint with permission of Microchip)



108 Chapter 3 � PIC18 Development Tools

To run the program, select Debugger> Run. It should run briefly and then halt on the line
at which the breakpoint was set. The screen should look like that in Figure 3.19 after the pro-
gram halts.

Figure 3.19 � Source code window—Breakpoint Halt (reprint with permission of Microchip)

3.6.6 Tracing Code
There are times that the user will have difficulty identifying the program bugs. Tracing pro-

gram becomes necessary under such situations. Although single stepping through the program
would allow the user to identify the program bugs, it would be easier for the simulator to cap-
ture the execution trace of many instructions all at once while the user goes through them
instruction by instruction.

The Simulator Trace can be used to record the execution of the user program. The user can
enable the Simulator Trace by selecting Debugger> Settings and choosing the Pins/Trace tab.

As shown in Figure 3.20, there are two check boxes to control how the Simulator Trace col-
lects data. When only the top box is checked, the simulator collects data when the simulator is
in Run mode, it collects data until the user halts at a breakpoint or manually stops the simula-

Figure 3.20 � Simulation Trace enable (reprint with permission of Microchip)



3.6 � Using the MPLAB SIM in Debugging PIC18 Applications 109

Figure 3.21 � Simulation trace display (reprint with permission of Microchip)

tor. It will show the last 8192 cycles collected. This mode is useful if the user wants to see the
record of instructions leading up to a breakpoint.

If the second button is also checked, the trace memory will collect 8192 cycles of data and
then stop collecting and halt the user application at a breakpoint. This mode is useful for see-
ing the record of instructions after the user presses run.

After enabling Simulator Trace, make sure that the program is reset before running the pro-
gram. Since tutor1.asm is a short program, the simulator will halt at the breakpoint. Select
View> Simulator Trace to view the simulation trace. The trace display is shown in Figure 3.21.
The trace display shows a time stamp at every cycle, and the data that were read or written into
file registers will be captured and displayed.

There are 18 columns in the trace display. The meanings of these columns are as follows:
� Line. Decimal cycle number from start of trace session
� Addr. Program address of instruction
� Op. Numeric op code of instruction
� Label. Symbolic label of instruction, if known
� Instruction. Disassembled instruction
� SA. Source address, the register address of read operation
� SD. Source data, the data read from the register
� DA. Destination address, the register address of the destination
� DD. Destination data, the data written into the destination register
� Cycles. Time before the execution of an instruction, from reset
� n Probe (n = 7, 0). Irrelevant in simulator, used in MAPLAB ICE2000 emulator only

(each n value is in one column)



110 Chapter 3 � PIC18 Development Tools

If there is any dash in the row for these values, it means that the operation did not access any
file register for this instruction. The column with the label of “Time” is the time stamp. This
can be used to measure the execution time of routines. The time is calculated on the basis of
the clock frequency entered in the Debugger> Settings Clock tab.

In line 15 of Figure 3.21, both the source register and the destination register are the same
register (at 0x00, the count value). The value of count is 1 after the first array element (0x00) is
checked because 0x00 is a multiple of 4. You can scroll down the Simulator Trace and find that
the final value of count is 9.

If the user puts the cursor over the top row of the trace display where the column headings
are listed and presses the right mouse button, a configuration dialog will pop up as shown in
Figure 3.22. All the checked items will appear in the trace window. The user can uncheck
columns to reduce clutter if the user is not interested in the data in those columns. The entries
labeled as Probe 7, Probe 6, and so on are for the MPLAB ICE2000 emulator trace and are not
relevant to the simulator. They should be unchecked.

Figure 3.22 � Configure Simulation Trace (reprint with permission of Microchip)

3.6.7 Advanced Simulator Options
There are other characteristics of the simulator that can be configured from the MPLAB

IDE dialogs. Normally, the default condition of the configuration bits has the Watch Dog Timer
(WDT) enabled. This will cause the simulator to reset when the internal WDT times out.

Unless one wants to test the functioning of the WDT, one would be better off by disabling
the WDT. To disable the WDT, one needs to bring up the Configuration Bits dialog by select-
ing Configure> Configuration Bits. The Configure Bits dialog is shown in Figure 3.23.

Click on the line that contains Watchdog Timer, and then a selection box will appear. Scroll
down to select Disabled to prevent the WDT from causing the program to reset. The WDT selec-
tion box is shown in Figure 3.24. If the user uses ICD2 to perform software debugging, then Low
Voltage Program should also be disabled, whereas Background Debug should be enabled.



3.7 � Using the MPLAB ICD2 111

Figure 3.23 � Configuration Bits dialog (reprint with permission of Microchip)

Figure 3.24 � Diable the WDT timer (reprint with permisson of Microchip)

3.7 Using the MPLAB ICD2

ICD2 can be connected to the PC via one of the COM ports or USB ports. The USB port con-
nection is preferred because it provides much faster data transfer between the PC and the ICD2.

After building the project, the user can select ICD2 to debug his or her program. This choice
is preferred when the hardware, such as a PIC18 demo board, is available. ICD2 can be selected
by selecting Debugger> Select Tool> MPLAB ICD2.

Before using the ICD2 to debug the application, the user must make sure that his or her tar-
get hardware or demo board is connected to the ICD2 using a modular connector. The shape of
the modular connector is shown in Figure 3.25.



3.7.1 ICD2 Settings
ICD2 needs to be set up properly before it can be used. Select Debugger> Settings (or

Programmer> Settings) to configure ICD2. A setting window as shown in Figure 3.26 will appear
on the screen. Figure 3.26 shows the status of the ICD programmer. The status of ICD2 is con-
nected and it is automatically connected at startup.

Modular
Connector
Pin

Microcontroller
Pin

6 Not Used

5 RB6

4 RB7

3 Ground

Bottom View of Modular Connector
Pinout on Designer's Board

2 Vdd

1

1

1

6

6
Vpp

Figure 3.25 � MPLAB ICD2 modular connector (reprint with permission of Microchip)

Figure 3.26 � ICD2 set up window (reprint with permission of Microchip)



3.7 � Using the MPLAB ICD2 113

The user must make sure that every setting is correct. There are three settings that need to
be set properly: power, communication, and program. Click on the Power tab, and the screen
will change to that in Figure 3.27. Notice that the Power Target Circuit From ICD2 setting is
not selected. This is not desirable because ICD2 does not have enough power to drive the tar-
get hardware or demo board.

Click on the Communication tab shown in Figure 3.26, and the available settings will be
made visible as shown in Figure 3.28. Choose USB if the PC has an available USB port.
Otherwise, choose one of the COM ports. When selecting a COM port, the user will also need
to set the baud rate. There are two baud rates to choose from: 19200 and 57600. Try the higher
data rate. If it is not working properly, then switch to 19200.

Figure 3.27 � ICD2 power status and setting 
(reprint with permission of Microchip)

Figure 3.28 � Communication settings for ICD2
(reprint with permission of Microchip)

The last setting to be made is Program. Click on the Program tab, and its setting will be
brought out as shown in Figure 3.29. The default settings are acceptable for this tutorial.

The remaining two tabs (Limitations and Versions) are for information purpose. The user
should know the limitations of ICD2. Click on the Limitations tab, and its contents are shown
in Figure 3.30.



114 Chapter 3 � PIC18 Development Tools

ICD2 will use certain program memory and special- function registers (SFRs) on the tar-
get microcontroller unit. By clicking on the Details tab, the user can look for device specific
limitations.

After completing the settings of ICD2, the user is ready to debug his or her application on
the target hardware with the help of ICD2. Most of the debug techniques applicable to MPLAB
SIM are also applicable to ICD2.

Here we use a program that computes the sum of integers from 1 to n to illustrate the process.
The program is as follows:

#include <p18F452.inc>
n equ D′100′
sum_hi set 0x01 ; high byte of sum

Figure 3.29 � ICD2 program setting 
(reprint with permission of Microchip)

Figure 3.30 � ICD2 limitations (reprint with permission 
of Microchip)



3.7 � Using the MPLAB ICD2 115

sum_lo set 0x00 ; low byte of sum
i set 0x02 ; loop index i

org 0x00 ; reset vector
goto start
org 0x08
retfie
org 0x18
retfie

start clrf sum_hi,A ; initialize sum to 0
clrf sum_lo,A ; “
clrf i,A ; initialize i to 0
incf i,F,A ; i starts from 1

sum_lp movlw n
cpfsgt i,A ; compare i with n and skip if greater than
goto add_lp ; perform addition when i ≤ 50
goto done ; it is done when i > 50

add_lp movf i,W,A ; place i in WREG
addwf sum_lo,F,A ; add i to sum_lo
movlw o
addwfc sum_hi,F,A ; add carry to sum_hi
incf i,F,A ; increment loop index i by 1
goto sum_lp

done nop
end

Perform the following steps to enter and build the project:

1. Follow the procedure described in Section 3.5.3 to enter the source code 
(call it tutor2.asm).

2. Follow the procedure described in Section 3.5.4 to add source code to the project 
(call the project tutor2).

3. Follow the procedure described in Section 3.5.5 to build the project.

After building the project, perform the following steps:

1. Configure the ICD2 debugger properly.

2. Before debugging the program using ICD2, the target device needs be programmed. 

Program the hex file (generated by the assembler) into the demo board by selecting the
Program command under the Debugger menu.

3. Set up a watch window and add variables sum_hi and sum_lo into the Watch window.

4. Set a breakpoint at the statement of done nop.

5. Reset ICD2 by pressing function key F6.

6. Run the program (the program execution will be halted at the breakpoint).

The resultant screen on the MPLAB IDE window is shown in Figure 3.31. The Watch window
displays the sum as a hex value 13BA (equivalent to decimal 5050) and is correct.



116 Chapter 3 � PIC18 Development Tools

If the program is not running correctly, then the user will need to use the techniques
described in Sections 3.6.2 to 3.6.6 to debug the program. The user can combine the use of
breakpoints, single stepping, and code tracing to identify the errors in the program.

3.8 Demo Boards from Shuan-Shizu Enterprise

Shuan-Shizu Enterprise has designed three PIC18 demo boards for learning the PIC18
microcontroller. The SSE452, the SSE8720, and the SSE8680 use the PIC18F452, the
PIC18F8720, and the PIC18F8680, respectively, as their microcontrollers. Product information
about these demo boards can be found at the Web site at www.evb.com.tw or by e-mail at
Vincent-fan@umail.hinet.net. The features of these demo boards are described in the following
sections.

3.8.1 SSE452 Demo Board
The main design feature of this demo board is that it allows the user to easily switch micro-

controllers (see Figure 3.32). The SSE452 allows the user to specify the option of adding 28-pin
and/or 40-pin ZIF sockets for the microcontroller. This allows the user to experiment with dif-
ferent 28-pin or 40-pin PIC18 microcontrollers.

Figure 3.31 � Program for computing the sum of integers from 1 to 100 and the watch window
(reprint with permission of Microchip)



3.8 � Demo Boards from Shuan-Shizu Enterprise 117

In addition to the PIC18F452 on-chip peripheral functions, the SSE452 adds the following
features:

1. One PCB suitable for any 28-pin or 40-pin PIC18 microcontroller

2. High-current sink/source: 25 mA

3. One RS-232 connector

4. Two debounced push-button switches (can be used as external interrupt sources)

5. One 8-bit DIP switch for digital input

6. One 4 × 4 keypad connector for interfacing with 16-key keypad

7. One rotary encoder with push button for optional input

8. One TC77 temperature sensor with SPI interface

9. One EEPROM (24LC04B) with I2C interface

10. One 2 × 20 bus expansion port to make signals available to end user

11. One potentiometer for exercising the A/D function

12. Optional devices: 2 × 20 character LCD, 48/28-pin ZIF socket

13. Digital signals with frequency from 1 Hz up to 8 MHz for exercising timer functions

14. ICD2 connector

Figure 3.32 � Photo of the SSE452 demo board (reprint with permission 
of Shuan-Shizu Enterprise)



118 Chapter 3 � PIC18 Development Tools

3.8.2 SSE8720 Demo Board
This demo board uses the PIC18F8720 as its microcontroller and was designed for those

users who need more I/O pins and more on-chip flash program memory (see Figure 3.33). The
features of the SSE8720 are as follows:

1. Digital signals with frequency from 1 Hz up to 16 MHz for experimenting with timer
functions

2. ICD2 connector for debugging

3. DB9 connector provides EIA232 interface to connect to USART1

4. Four debounced switches (connected to RB0/INT0, RB1/1NT1, RB2/INT2, and
RB3/INT3) and one reset button

5. One potentiometer connected to RA0/AN0 pin for evaluating the A/D converter

6. One 8-bit DIP switch (Port F)

7. Eight LEDs

8. One 2 × 20 LCD

9. On-board 5-V regulator

10. One EEPROM with I2C interface

11. An SPI-compatible (four-wire) digital temperature sensor TC72

12. An 8-Ω speaker (driven through an NPN transistor) connected to RC2/CCP1 pin

13. One Dallas DS1306 SPI-compatible real-time clock chip

14. Two 2 × 20 connectors for accessing microcontroller signals

Figure 3.33 � SSE8720 demo board with speaker (reprint with permission 
of Shuan-Shizu Enterprise)



3.8 � Demo Boards from Shuan-Shizu Enterprise 119

3.8.3 The SSE8680 Demo Board
The SSE8680 is designed for those users who are interested in experimenting with the CAN

network (see Figure 3.34). Since this board uses the 80-pin PIC18F8680, it is also suitable for
those applications that require many I/O pins. The CAN network is widely used in automotive
and control applications. In addition to the on-chip peripheral functions of the PIC18F8680
microcontroller, the SSE8680 demo board has the following features:

1. Digital signals with frequency ranging from 1 Hz up to 16 MHz for experimenting
with timer functions

2. ICD2 connector for debugging

3. DB9 connector provides EIA232 interface to connect to USART1

4. Four debounced switches (connected to RB0/INT0, RB1/INT1, RB2/INT2, and RB3/
INT3) and one reset button (not connected to any pin)

5. One potentiometer connected to RA0/AN0 pin for evaluating the A/D converter

6. One 8-bit DIP switch (Port F)

7. Eight LEDs

8. One 2 × 20 LCD

Figure 3.34 � SSE8680 demo board with LCD kit (reprint with permission 
of Shuan-Shizu Enterprise)



120 Chapter 3 � PIC18 Development Tools

9. On-board 5-V regulator

10. One EEPROM with I2C interface

11. An SPI-compatible (four-wire) digital temperature sensor TC72

12. An 8-Ω speaker (driven through an NPN transistor) connected to RC2/CCP1 pin

13. One Dallas DS1306 SPI-compatible real-time clock chip

14. Two 2 × 20 connectors for accessing microcontroller signals

15. MCP2551 CAN transceiver

16. Rotary encoder

3.8.4 Debug Monitor
A debug monitor is being developed for these demo boards. The debug monitor will allow

the user to download the hex file (created by MPLAB® IDE) onto the demo board without using
the ICD2 in-circuit debugger. In addition, this monitor will allow the user to set breakpoints,
single step the program, and display and modify the contents of register values. The monitor
will also be able to display the program downloaded into the demo board. (It needs a disassem-
bler to do this.). The beta version of the monitor is functioning. The stable version of the mon-
itor should be available by the time this book is published.

Without a monitor, one needs the MPLAB IDE, a demo board, and an ICD2 to experiment
with the hardware. With the monitor, one needs only the MPLAB IDE and a demo board in order
to experiment with the hardware peripheral functions.

3.9 Summary

Hardware and software development tools are essential for learning the features of the
microcontroller and developing microcontroller-based products. This chapter provides a brief
review of most of the development tools from Microchip and also the demo boards made by
Shuan-Shizu Enterprise.

Undoubtedly, the MPLAB® IDE is the most important software development tool from
Microchip. This package consists of the following:

� Assemblers for all microcontrollers manufactured by Microchip
� MPLINK linker
� Simulators for all microcontrollers manufactured by Microchip
� Control programs for several hardware tools, such as MPLAB ICD2 debugger and

other debugging hardware made by Microchip
� An IDE that combines all the software development tools and allows the user to

perform development work from program entry until simulation without leaving
the same environment

All microcontrollers provide certain features to support software debugging. Many micro-
controllers utilize the JTAG interface to support software debugging in addition to performing
chip-testing function. The PIC18 microcontroller provides the ICSP protocol to support soft-
ware debugging and on-chip flash memory programming.

Tutorials on the use of MPLAB IDE, ICD2, and demo boards are provided at the end of this
chapter.



3.10 � Lab Exercises and Assignments 121

3.10 Lab Exercises and Assignments

L3.1 Start the MPLAB IDE program and enter the following program as a text file with the file
name progL1.asm:

#include <p18F452.inc>
radix dec

sum_hi set 0x01
sum_lo set 0x00
lp_cnt set 0x02
kk equ 50

org 0x00
goto start
org 0x08
retfie
org 0x18
retfie

start movlw kk
movwf lp_cnt
clrf sum_hi,A
clrf sum _lo,A
movlw upper array
movwf TBLPTRU,A
movlw high array
movwf TBLPTRH,A
movlw low array
movwf TBLPTRL,A

loop tblrd*+
btfsc TABLAT,0,A
goto next
movf TABLAT,W,A
addwf sum_lo,F,A
clrf WREG,A
addwfc sum_hi,F,A

next decfsz lp_cnt,F,A
goto loop
nop

array db 01,02,03,04,05,06,07,08,09,10
db 11,12,13,14,15,16,17,18,19,20
db 21,22,23,24,25,26,27,28,29,30
db 31,32,33,34,35,36,37,38,39,40
db 41,42,43,44,45,46,47,48,49,50
end

Perform the following operations:

1. Create a new project called progL1 in the same directory where the program
prog1L1.asm is stored.

2. Configure MPLAB IDE properly.

3. Add the source code file progL1.asm into the project.



122 Chapter 3 � PIC18 Development Tools

4. Build the project.

5. Select MPLAB SIM as the debug tool and perform appropriate configuration as
described in Sections 3.6.1 to 3.6.7.

6. Set a breakpoint at the last instruction (nop).

7. Open a Watch window and enter symbols sum_hi and sum_lo into the window.

8. Reset the project by pressing the function key F6.

9. Run the program by pressing the function key F9.

10. Check the values of symbols sum_hi and sum_lo.

11. View the simulation trace to identify errors. You should not see any error if you type
everything correctly.

Can you figure out what this program is doing?

L3.2 Enter the following program as a text file and name it progL2.asm:

#include <p18F452.inc>
radix dec

ar_cnt equ 30 ; array count
lp_cnt set 0x00 ; loop count symbol
buffer set 0x010

org 0x00
goto start
org 0x08
retfie
org 0x18
retfie

start movlw upper array ; set TBLPTR as the array pointer
movwf TBLPTRU,A ; “
movlw high array ; “
movwf TBLPTRH,A ; “
movlw low array ; “
movwf TBLPTRL,A ; “
lfsr FSR0,buffer ; use FSR0 as a pointer to buffer
movlw ar_cnt
movwf lp_cnt ; set up loop count value

loop1 tblrd*+
movff TABLAT,POSTINCo ; move from table latch to buffer in data memory
decfsz lp_cnt, F,A ; decrement lp_cnt and skip if zero
goto loop1
lfsr FSR0,buffer ; set FSR0 to point to the first array element
lfsr FSR1,buffer+ar_cnt-1 ; set FSR1 to point to the last array element
movlw ar_cnt/2
movwf lp_cnt ; set loop count

loop2 movf INDF0,W ; copy array element
movff INDF1,POSTINC0 ; store and increment pointer FSR0
movwf POSTDEC1 ; store and decrement pointer FSR1
decfsz lp_cnt,F,A
goto loop2
nop



3.10 � Lab Exercises and Assignments 123

forever goto forever
array db 1,2,3,4,5,6,7,8,9,10

db 11,12,13,14,15,16,17,18,19,20
db 21,22,23,24,25,26,27,28,29,30
end

Perform the following operations:

1. Create a new project called progL2 in the same directory where the file progL2.asm 
is saved.

2. Add the file progL2.asm into the project.

3. Build the project.

4. Select ICD2 as your debug tool.

5. Make sure that ICD2 is configured properly.

6. Program the hex code into the microcontroller on your demo board. It takes a few
seconds for the programming to be completed. You will see the message
“Programming Target. . .” at the left bottom of the MPLAB IDE window. When
programming is done, this message will disappear.

7.Open the Program Memory window by selecting View> Program Memory. Scroll the
program memory so that program lines 44 to 60 can be seen on the window as shown in
Figure L3.1. Look at the column with the title Opcode. The numbers from 1 to 30 can
be seen starting from line 46. How does the Program Memory window store the data?

Figure L3.1 � Snap shot of program memory window for lab exercise L3.2 
(reprint with permission of Microchip)



What operation is performed by this program?

L3.3 Write a program to compute the average of an array of 32 8-bit elements. The array is
stored immediately after your program with the name of array1. Store the sum (two bytes) and
average in data memory 0x00–0x01 and 0x02, respectively. Use the simulator to simulate the
program. Hint: Divide-by-32 can be implemented by shifting to the right by five places.
L3.4 Write a program to count the number of elements that are greater than 30 in an array of n
8-bit elements using the for i = n1 to n2 do looping construct. Debug the program using the
ICD2 and the demo board. Open a Watch window to view the result.

124 Chapter 3 � PIC18 Development Tools

8. Open the File Register window. Resize and scroll so that the data memory locations
0x00 to 0x40 can be seen on the screen.

9. Set a breakpoint at line 30 and run the program until it halts at the breakpoint. 
The contents of the File Registers window should change to that in Figure L3.2.

10. Set a new breakpoint at line 42 (the last nop instruction) and rerun the program. 
The contents of the File Registers window should change to that in Figure L3.3.

Figure L3.3 � File register contents when program halts at the second breakpoint 
(reprint with permission of Microchip)

Figure L3.2 � Contents of file registers at the first breakpoint (reprint with permission 
of Microchip)


