Analysis of an AC signal

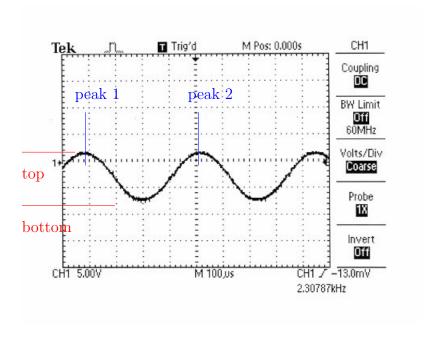


Figure 1: Sample

Calculations

Amplitude of the signal is given by

$$A = \frac{V_{top} - V_{bottom}}{2}$$

$$= \frac{(0.3 \pm 0.1) \, div - ((-1.6 \pm 0.1) \, div)}{2} \times 5V/div$$

$$= \frac{(1.9 \pm 0.2) \, div}{2} \times 5V/div$$

$$= (4.75 \pm 0.5) \, V$$

DC offset of the signal is given by

$$\begin{split} D &= V_{middle} = \frac{V_{top} + V_{bottom}}{2} \\ &= \frac{(0.3 \pm 0.1) \, div + ((-1.6 \pm 0.1) div)}{2} \times 5V/div \\ &= \frac{(-1.3 \pm 0.2) \, div}{2} \times 5V/div \\ &= (-3.25 \pm 0.5) \, V \end{split}$$

Period of the signal is given by

$$T = T_{peak\ 2} - T_{peak\ 1} = ((5.1 \pm 0.1) \, div - (0.8 \pm 0.1) \, div) \times 100 \mu S/div$$
$$= (4.3 \pm 0.2 div) \times 100 \mu S/div$$
$$= (430 \pm 20) \, \mu S$$

Frequency of the signal is given by

$$f = \frac{1}{T} = \frac{1}{(430 \pm 20) \,\mu S} = (2.3 \pm 0.1) \,kHz$$

Explanations

The waveform is a sine wave, with the amplitude and DC offset calculated above. The calculated frequency of $2.3 \pm 0.1 kHz$ agrees with the value of 2.30787kHz from the oscilloscope.